Molecular Systems in a Strong Magnetic Field

Alexander V. Turbiner ICN-UNAM, Mexico

London, April 2006

The goal:

How

ATOMIC - MOLECULAR PHYSICS

IN a strong MAGNETIC FIELD

looks like

A particular overview of one-two electron molecular systems made out of protons and/or α -particles which do exist in a strong magnetic field

$$B \le 4.414 \times 10^{13} G$$

(in collaboration with J.C. Lopez Vieyra & N. Guevara)

1e:

$$H, H_2^+, H_3^{2+}, H_4^{3+}$$

$$(HeH)^{2+}, (H-He-H)^{3+}, (He-H-He)^{4+}$$

$$He^+, He_2^{3+}$$

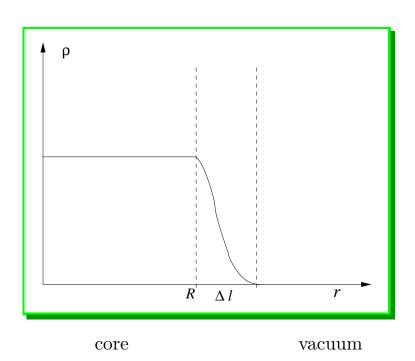
(the list is complete for $B \le 4.414 \times 10^{13} \,\mathrm{G}$)

2e:

$$H^{-}$$
, H_{2} , H_{3}^{+} , H_{4}^{2+} , H_{5}^{3+} etc
 $(HeH)^{+}$ etc
 He , He_{2}^{2+} etc

H-atom is stable but has a highest total energy among 1e systems

NEUTRON STARS



 $\sim 10^8 - 10^9 \, (\mathrm{out~of~} 10^{11})$ in our Galaxy

 $(\sim 1500 \text{ in catalogue})$

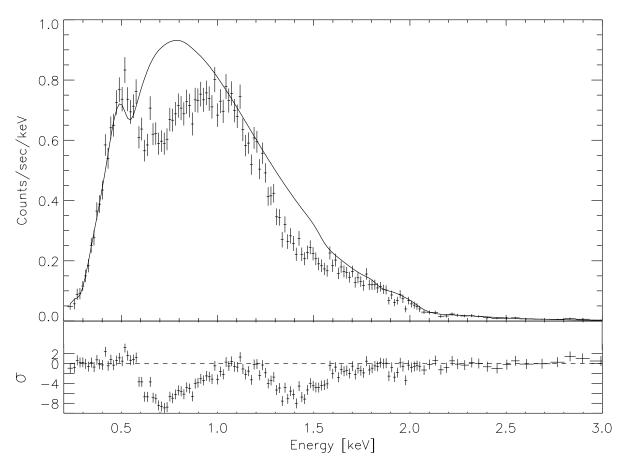
 $M \sim 1.5 \ M_{\odot}$

 $r \sim 5 - 15 \ Km$

 $\Delta \ell \sim 1 - 10 \ cm$

 $T \sim 10 - 100 eV \ (10^5 - 10^6 \, K)$

 $B \sim 10^{12} - 10^{13} G$



Chandra + XMM-Newton data (Hailey & Mori, 2003)

Two absorption lines:

$$E_1 = 730 \pm 100 \text{ eV}$$

$$E_2 = 1400 \pm 130 \text{ eV}$$

Why the problem is so difficult?

- Highly-non-uniform asymptotics of potential at large distances
- Weakly-bound states

$$E_{binding} << E_{total}$$

(e.g. for H_2^+ at $B = 10^{13}$ G the ratio is $\lesssim 10^{-2}$)

\mathbf{Method}

- ♦ Variational Calculation
- ♦ Simple and unique trial functions applicable for the whole range of accessible magnetic fields $(0-4.414 \times 10^{13}G)$ which can lead to a sufficiently high accuracy in total energy

How to choose trial functions?

- Physical relevance (as many as possible physics properties should be encoded)
- ♦ Mathematical (computational) simplicity shouldnot be a guiding principle
- * Resulting perturbation theory should be convergent (see below)

Variational calculation

For chosen Ψ_{trial} a trial Potential

$$V_{trial} = \frac{\nabla^2 \Psi_{trial}}{\Psi_{trial}}, E_{trial} = 0$$

hence, we know the Hamiltonian for which the normalized Ψ_{trial} is eigenfunction

$$H_{trial} \Psi_{trial} = [p^2 + V_{trial}] \Psi_{trial} = 0$$

then

$$E_{var} = \int \Psi_{trial}^{*} H \Psi_{trial}$$

$$= \int \psi_{trial}^{*} \underbrace{H_{trial} \Psi_{trial}}_{=0} + \int \Psi_{trial}^{*} (H - H_{trial}) \Psi_{trial}$$

$$= 0 + \int \Psi_{trial}^{*} (V - V_{trial}) \Psi_{trial} " + \dots " \equiv E_0 + E_1 " + \dots "$$

- The variational energy is a sum of the first two terms of a certain perturbative series with perturbation $(V V_{trial})$,
- \bullet How to calculate E_2 in practice? in general, unsolved yet

INSTRUCTIVE EXAMPLE

Hydrogen in a magnetic field (ground state)

$$V = -\frac{2}{r} + \frac{B^2}{4}\rho^2$$
, $\rho^2 = x^2 + y^2$.

$$\psi_0 = \exp\left(-\alpha r - \beta B \rho^2 / 4\right)$$

 α, β variational parameters

with

$$V_0 = \frac{\Delta \psi_0}{\psi_0} = -\frac{2\alpha}{r} + \frac{\beta^2 B^2}{4} \rho^2 + \underbrace{\frac{\alpha \beta B}{2} \frac{\rho^2}{r}}_{V - V_0}, \quad E_0 = -\alpha^2 + \beta B$$

Relative accuracy $\sim 10^{-4}$ in total energy comparing to an accurate calculation.

REMARK (A.Potekhin & AT '01):

$$\psi_0 = \exp\left(-\sqrt{\alpha^2 r^2 + (\gamma_1 r^3 + \gamma_2 r^2 \rho + \gamma_3 r \rho^2 + \gamma_4 \rho^3) + \beta^2 B^2 \rho^4 / 16}\right)$$

gives relative accuracy $\sim 10^{-7}$ in total energy for magnetic fields $0 < B < 4.414 \times 10^{13}$ G.

 $H: E_b(10000 \, a.u.) = 27.95 \, Ry$

 $He^+: E_b(10000 \, a.u.) = 78.43 \, Ry$

• Hydrogen atom in a magnetic field (ground state)

$$V = -\frac{2}{r} + \frac{B^2}{4}(x^2 + y^2)$$
 , $0 \le B \le B_{Schwinger}$

several hundred articles since 1926, but quadrupole moment is calculated in 2001 only

Howard-Hasegawa ('61) found leading term in asymptotics

$$E_{binding} = log^2 B + \dots , \quad B \to \infty$$

but at 2003 only (!) Karnakov-Popov paid attention (and tried to fix) that *even* at the Schwinger limit $B = B_{Schwinger} (\approx 2 \times 10^4 \, a.u.)$ the ratio

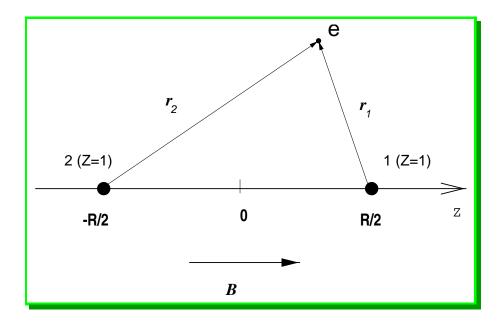
$$\frac{E_{binding}^{exact}}{log^2B} \approx 1/3$$

asymptotics is delayed and ...

NO DOMAIN OF APPLICABILITY OF ASYMPTOTIC METHODS in non-relativistic domain of B

(ppe) system

 H_2^+ molecular ion (Parallel Configuration)



$$V = -\frac{2}{r_1} - \frac{2}{r_2} + \frac{2}{R} + Bm_l + \frac{B^2 \rho^2}{4}$$
$$\rho^2 = x^2 + y^2$$

Trial Functions for H_2^+

[I]

$$\psi_1 = \underbrace{e^{-\alpha_1(r_1+r_2)}}_{\text{Heitler-London}} \underbrace{e^{-\beta_1 B \rho^2/4}}_{\text{Landau}}$$

 α_1, β_1, R variational parameters

$$V_1^{trial} = -2\alpha_1 \left(\frac{1}{r_1} + \frac{1}{r_2} \right) + \beta_1^2 \frac{B^2 \rho^2}{4} + 2\alpha_1^2 - \beta_1 B$$

$$+ 2\alpha_1^2 \vec{n_1} \cdot \vec{n_2} + \alpha_1 \beta_1 B \rho^2 \left(\frac{1}{r_1} + \frac{1}{r_2} \right)$$

$$V_{-V_{trial}}$$

- - (anti) screening of the nuclear charges and of the magnetic field, respectively
- ♦ We assume that the modified Heitler-London approximation can give a significant contribution for internuclear distances near equilibrium.

'Covalent' coupling of the system to be verified a posteriori

$$\psi_2 = \underbrace{\left(e^{-\alpha_2 r_1} + \sigma e^{-\alpha_2 r_1}\right)}_{\text{Hund-Mulliken}} e^{-\beta_2 B \rho^2 / 4}$$

- \bullet α_2, β_2, R are variational parameters.
- ♦ We assume that this function can give a significant contribution for large internuclear distances
- 'Ionic' coupling, H + p (to be verified a posteriori).

In order to describe both domains $R \simeq R_{eq}$ and $R \gg R_{eq}$:
we use interpolations

(III-1) Non-linear Interpolation (simplest)

$$\psi_{3_1} = \underbrace{\left(e^{-\alpha_3 r_1 - \alpha_4 r_2} + \sigma e^{-\alpha_3 r_2 - \alpha_4 r_1}\right)}_{\text{Guillemin-Zener}} e^{-\beta_3 B \rho^2 / 4}$$

- If $\alpha_3 = \alpha_4$ then $\psi_{3_1} \to \psi_1$
- If $\alpha_4 = 0$ then $\psi_{3_1} \to \psi_2$
- \bullet Ionic \leftrightarrow covalent coupling interpolation (verified a posteriori).
- \bullet $\alpha_3, \alpha_4, \beta_3, R$ are variational parameters
- III-2 Linear Interpolation

$$\psi_{3_2} = A_1 \psi_1 + A_2 \psi_2$$

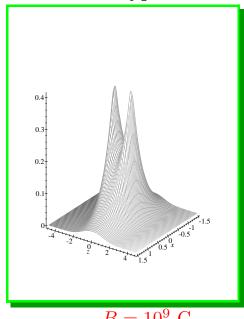
(IV) Superposition of the two kinds of interpolation

$$\psi_4 = A_{3_1}\psi_{3_1} + A_{3_2}\psi_{3_2}$$

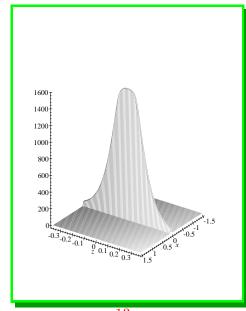
- 10 variational parameters
- \bullet ψ_4 gives the **lowest** total energies for the ground state compared with previous calculations $(\sim 50 \ calculations) \ for \ B > 10^{10} \ G \ up \ to$ $B = 4.414 \times 10^{13} G$
- For $B \lesssim 10^{10} \, G$: Relative accuracy $\sim 10^{-5}$ in binding energy (comparing to the most accurate calculation by Guan et al '03)
- Excited states $1\sigma_u, 1\pi_{g,u}, 1\delta_{g,u}$ were studied in details

Physical Phenomenon:

For $B \sim 5 \times 10^{11} G$ the coupling changes from 'ionic' type to 'covalent' type



$$B = 10^9 \text{ G}$$

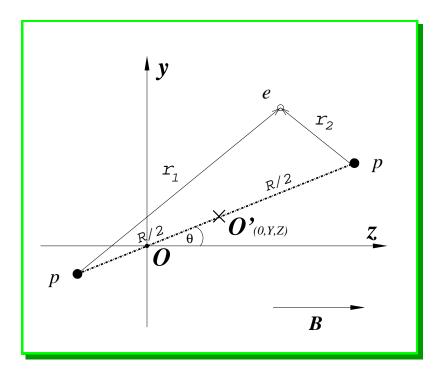


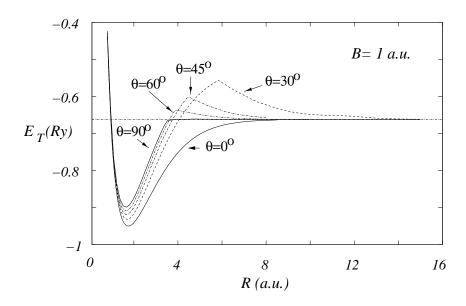
 $B = 10^{13} \text{ G}$

ppe system

 H_2^+ : inclined configuration

(The molecular axis and magnetic line form angle θ)





Parallel configuration is optimal for all magnetic fields

• H_2^+ does not exist for large inclinations at $B > 10^{11} \,\mathrm{G}$

 H_2^+ is stable for all B and the most bound 1e-system made from protons for $B \lesssim 10^{13}~G$

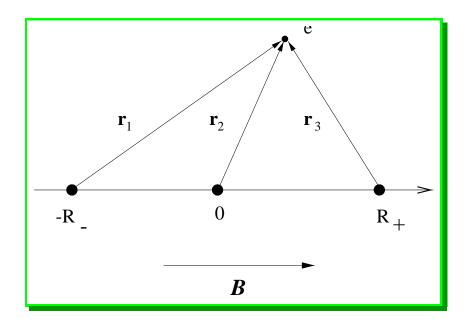
$$H_2^+ \nrightarrow H + p$$

$$E_b(10^{12}\,G) = 17.14\,Ry \;,\; E_b(10000\,a.u.) = 45.80\,Ry$$
 comparison with $H:\; E_b(10000\,a.u.) = 27.95\,Ry$ $\Delta E(1\sigma_g \to 1\pi_u) = 11.73\,Ry \; {\rm at}\; 10000\,a.u.$

(pppe) system

 H_3^{2+} : linear parallel configuration

(The molecular axis and magnetic line coincide)



$$V = \frac{2}{R_{-}} + \frac{2}{R_{+}} + \frac{2}{R_{-} + R_{+}} - \frac{2}{r_{1}} - \frac{2}{r_{2}} - \frac{2}{r_{3}} + \frac{B^{2}(x^{2} + y^{2})}{4},$$

For $B \gtrsim 10^{11}\,G$ the system (pppe) has a bound state, which manifests existence of the exotic molecular ion H_3^{2+}

(A.T., J.C. López V. and U. Solis H. '99)

(Without magnetic field H_3^{2+} does NOT exist!)

For $B \gtrsim 10^{11}\,G$ the total energy $E(R_+,R_-)$ has minimum for finite $R_+=R_-$ which is stable towards small deviations from linearity (parallel configuration is optimal)

 H_3^{2+} ion can exist for $B \gtrsim 10^{11} \, G$ as well as its excited states $1\pi_u, 1\delta_q$

$$H_3^{2+} \to H_2^+ + p$$

$$H_3^{2+} \nrightarrow H + p + p$$

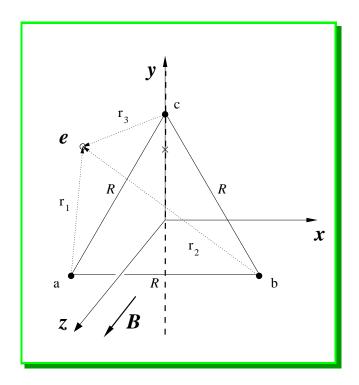
 H_3^{2+} is stable and the most bound 1e-system made from protons for $B\gtrsim 3\times 10^{13}\,G$

$$H_3^{2+} \nrightarrow H_2^+ + p$$
 $* * *$

$$E_b(10000 \, a.u.) = 45.41 \, Ry$$

$$\Delta E(1\sigma_g \to 1\pi_u) = 12.78 \, Ry \text{ at } 10000 \, a.u.$$

 H_3^{2+} ion (triangular configuration)



Does the system (pppe) in equilateral triangular configuration have a bound state in a magnetic field ?

At $B < 10^8 \, G$ or $B > 10^{11} \, G$ the total energy E(R) has no minimum at finite R

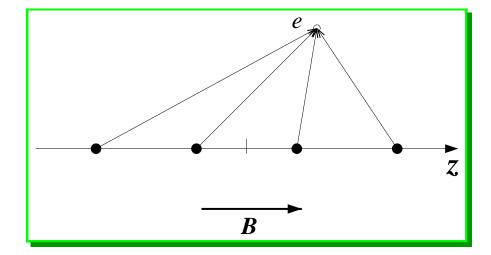
At $10^8 G \lesssim B \lesssim 10^{11} G$ the total energy E(R) has a well-pronounced minimum at finite R manifesting existence of H_3^{2+} in triangular configuration as a metastable (or unstable) system

precursor to linear configuration

No more spatial configurations found! (A.T. and J.C. López V. '02) (ppppe) system

 H_4^{3+} molecular ion (Parallel Configuration)

(J.C. López V. and A.T. '00, H.Olivares P. '04)



For $B \gtrsim 10^{13}\,G$ the system (ppppe) has a minimum in total energy

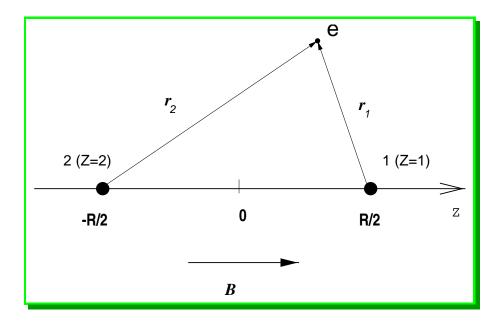
 \rightarrow the existence of the molecular ion $H_4^{(3+)}$ as metastable state as well as its excited state $1\pi_u$

$$E_b(3 \times 10^{13} \, G) = 38.42 \, Ry$$

(αpe) system

 $(HeH)^{(2+)}$ molecular ion

(A.T. and J.C. López V. '04)



- For $B \gtrsim 10^{12}\,\mathrm{G}$ the system (αpe) has a bound state manifesting the possible existence of the molecular ion $(HeH)^{(2+)}$ as well as its excited states $1\pi, 1\delta$
- For $B \gtrsim 10^{13} \,\mathrm{G}$ it becomes stable: $(HeH)^{(2+)} \nrightarrow He^+ + p$
- Parallel Configuration is always optimal

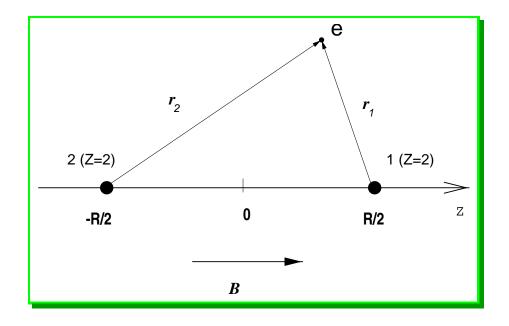
$$E_b(10000 \, a.u.) = 77.30 \, Ry$$

 $\Delta E(1\sigma \to 1\pi) = 20.80 \, Ry \text{ at } 10000 \, a.u.$

$(\alpha \alpha e)$ system

$He_2^{(3+)}$ molecular ion

(A.T. and J.C. López V. '04)



- For $B \gtrsim 2 \times 10^{11}$ G the system $(\alpha \alpha e)$ has bound states manifesting the existence of the molecular ion $He_2^{(3+)}$ as well as its excited states of positive parity $1\pi_u$, $1\delta_q$.
- For $B \gtrsim 10^{12} \, \mathrm{G}$ it becomes stable: $He_2^{(3+)} \nrightarrow He^+ + \alpha$
- Parallel Configuration is always optimal

$$E_b(10000 \, a.u.) = 86.23 \, Ry \quad [E_b^{He^+}(10000 \, a.u.) = 78.43 \, Ry]$$

$$\Delta E(1\sigma_g \to 1\pi_u) = 24.69 \, Ry \text{ at } 10000 \, a.u.$$

The striking relation between the binding energies of the most bound one-electron systems made from α -particles and made from protons:

$$E_b^{He^+,He_2^{(3+)}} \approx 2 E_b^{H_2^+,H_3^{2+}}$$

for
$$10^{11} G < B < 10^{14} G$$

- For $B < 10^{12} G$ in l.h.s. E_b of He^+ , otherwise E_b of the exotic He_2^{3+}
- For $B < 10^{13} G$ in r.h.s. E_b of H_2^+ , otherwise E_b of the exotic H_3^{2+}

Summary

One-electron linear systems

(for details see recent *Physics Reports*)

Optimal configuration of linear H_2^+ , H_3^{2+} , $H_4^{(3+)}$, $(HeH)^{2+}$ and $He_2^{(3+)}$ is parallel, along magnetic field (when exist)

when magnetic field grows:

- Binding energy of H, H_2^+ , H_3^{2+} , H_4^{3+} , $(HeH)^{2+}$ and He_2^{3+} grows (when exist)
- Natural size of the systems $H_2^+, H_3^{2+}, (HeH)^{2+}$ and He_2^{3+} decreases
- H_2^+ has the lowest E_{total} for $0 < B \lesssim 10^{13} \, G$ (made from protons)
- H_3^{2+} has the lowest E_{total} for $B \gtrsim 10^{13} \, G$ (made from protons)
- Possible existence of the system $H_5^{(4+)}$ for $B > 4.4 \times 10^{13} \, G$; but a reliable statement requires a consideration of relativistic corrections
- For $B \gtrsim 10^{12} \, G$ the exotic He_2^{3+} has the **lowest total energy** among systems made from protons and/or α -particles
- H_2^+ and linear H_3^{2+} binding energies \equiv ionization energies at $B \sim 3 \times 10^{13}$ G coincide, both are $\sim 700 \, \mathrm{eV}$, while for He_2^{3+} it is $\sim 1400 \, \mathrm{eV}$
- Something non-trial may happen at the Schwinger limit $B \sim 4.414 \times 10^{13} \,\text{G}$ (see Table)

• Technical point:

Many even quite sophisticated methods allow to find 1,2,3 significant digits in binding energy (e.g. E. Salpeter et al '92 for H_2^+ at 10^{11} G gives a single digit only), a problem comes when you want to go beyond, to higher accuracy.

PHYSICS REPORTS

A Review Section of Physics Letters

ONE-ELECTRON MOLECULAR SYSTEMS IN A STRONG MAGNETIC FIELD

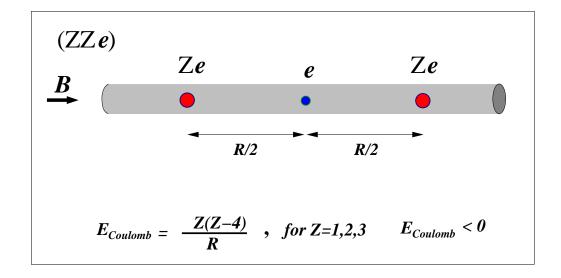
Alexander V. TURBINER, Juan Carlos LÓPEZ VIEYRA

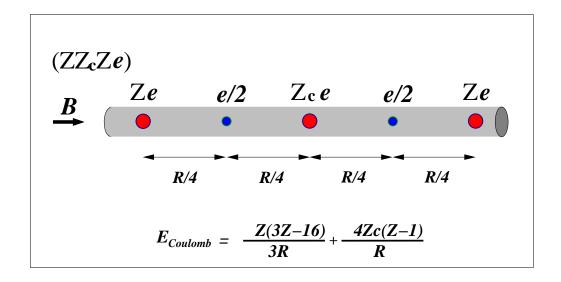
Also available on

SCIENCE DIRECT

www.sciencedirect.com

http://www.elsevier.com/locate/physrep





TWO ELECTRON SYSTEMS

(preliminary results)

Ground State \Rightarrow Existence

B = 0

 H_2

 $E_{BO} = -2.3469$ Ry (James and Coolidge, 15 parameters)

 $E_{BO} = -2.3478$ Ry (Heidelberg group, > 2000 gaussian orbitals)

 $E_{BO} = -2.3484 \text{ Ry } (A.T., N.Guevara, 14 parameters)$

 $E_{BO} = -2.3489 \text{ Ry (record calculations,} \gtrsim 1000 \text{ J-C type functions)}$

 H_3^+

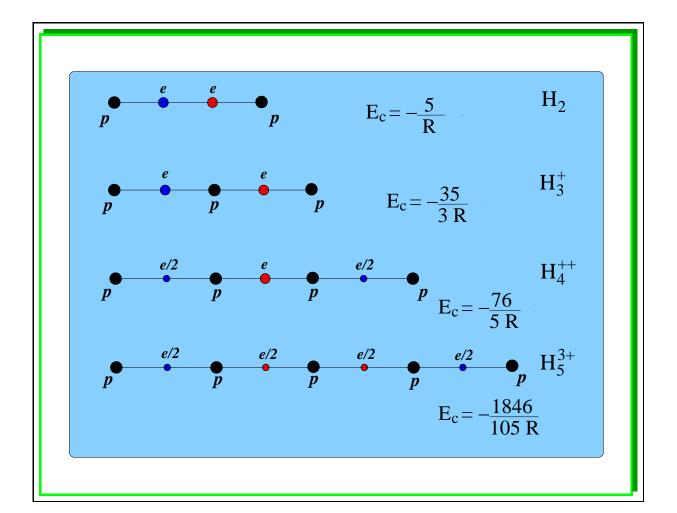
(Lowest Linear Spin-Triplet State)

 $E_{BO} = -2.2284 \text{ Ry (Schaad et al, '74, CI)}$

 $E_{BO} = -2.2298 \text{ Ry } (A.T., J.C.Lopez V., N.Guevara, 22 parameters)$

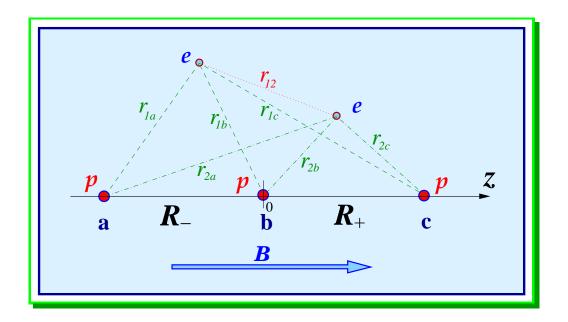
 $E_{BO} = -2.2322$ (Clementi et al '91, CI + J-C type)

Electronic correlation appears in explicit form $exp(ar_{12})$ in trial functions



 H_3^+ (first detailed study, A.T., N. Guevara, J.C. Lopez V. '06)

(linear, parallel configuration, the lowest states)



Basic trial function:

$$\psi^{(trial)} = (1 + \sigma_e P_{12})$$

$$(1 + \sigma_N P_{ac})(1 + \sigma_{N_a} P_{ab} + \sigma_{N_a} P_{bc})$$

$$\rho_1^{|m|} e^{im\phi_1} e^{\gamma r_{12}} e^{-\alpha_1 r_{1a} - \alpha_2 r_{1b} - \alpha_3 r_{1c} - \alpha_4 r_{2a} - \alpha_5 r_{2b} - \alpha_6 r_{2c} - B\beta_1 \frac{\rho_1^2}{4} - B\beta_2 \frac{\rho_2^2}{4}$$

and its possible degenerations.

Optimal configuration:

linear, parallel, symmetric $(R_{+} = R_{-})$,

it is stable towards all small deviations

$$\frac{1}{1} \frac{\Delta}{\Delta_g} = -0.4107 \text{ Ry} \qquad \frac{3}{1} \frac{\Pi}{g} = -14.429 \text{ Ry}$$

$$\frac{1}{1} \frac{\Pi}{g} = -0.6136 \frac{\Pi}{g} \qquad \frac{3}{2} \frac{\Pi}{g} = -14.760 \text{ Ry}$$

$$\frac{1}{1} \frac{\Sigma}{g} = -0.8086 \frac{\Pi}{g} \qquad \frac{3}{2} \frac{\Pi}{g} = -14.760 \frac{\Pi}{g}$$

$$\frac{1}{1} \frac{\Sigma}{g} = -1.3256 \frac{\Pi}{g} = -14.760 \frac{\Pi}{g}$$

$$\frac{3}{1} \frac{\Sigma}{g} = -2.0678 \frac{\Pi}{g} = -6.2762 \frac{\Pi}{g}$$

$$\frac{3}{1} \frac{\Sigma}{g} = -2.5519 \frac{3}{1} \frac{\Delta}{g} = -2.443 \frac{\Pi}{g} \frac{3}{2} \frac{\Delta}{g} = -6.624 \frac{\Pi}{g}$$

$$\frac{3}{1} \frac{\Pi}{g} = -2.6095 \frac{\Pi}{g} \frac{3}{3} \frac{\Delta}{g} = -6.624 \frac{\Pi}{g}$$

$$\frac{3}{1} \frac{\Pi}{g} = -3.0266 \frac{\Pi}{g}$$

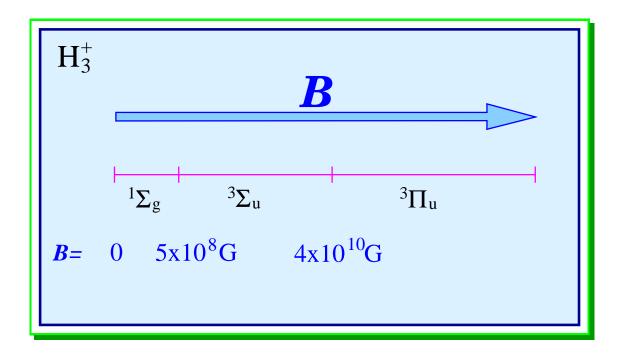
$$\frac{3}{1} \frac{\Pi}{g} = -3.3231 \frac{\Pi}{g} = -7.4901 \frac{\Pi}{g} \frac{3}{2} \frac{\Sigma}{g} = -16.92 \frac{\Pi}{g}$$

$$\frac{3}{1} \frac{\Sigma}{g} = -3.6366 \frac{\Pi}{g}$$

$$\frac{3}{1} \frac{\Sigma}{g} = -7.8765 \frac{\Pi}{g}$$

Low-lying states of the H_3^+ in a magnetic field in parallel configuration

 H_3^+ : ground state



Parallel configuration is optimal,

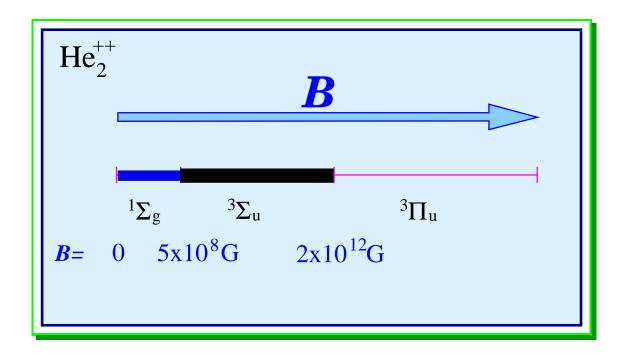
always stable

At B = 10000 a.u.

$$E_T = -95.21 \, Ry$$

$$E_T(H_2(^3\Pi_u)) = -71.34 \, Ry \, , \, E_T(H_2^+(1\pi_u) + H(1s)) = -62.02 \, Ry$$

 He_2^{2+} : ground state (the first study)



Parallel configuration is optimal,

metastable at $B < 0.2\,\mathrm{a.u.}$ $(He_2^{2+} \to He^+ + He^+)$

stable at B > 1000 a.u., otherwise does not exist!

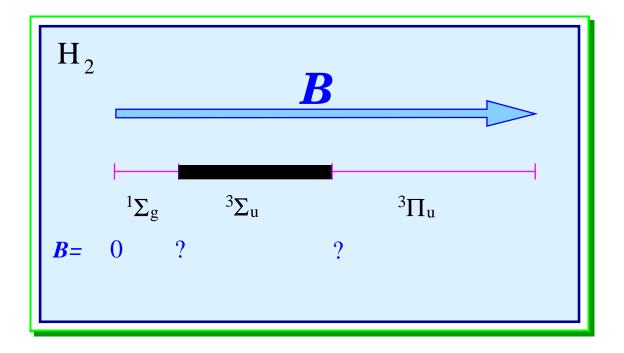
At B = 10000 a.u.

$$E_T = -174.506 \, Ry$$

$$E_T(He^+ + He^+) = -156.85 Ry (1s1s), = -137.26 Ry (1s2p_{-1})$$

 $E_T(He_2^{3+}(1\sigma_g) + e) = -86.233$

 H_2 : ground state (A.T. '83, ... Heidelberg group '90-'01)



Parallel configuration is optimal, stable, when exists, but always

$$E_T(H_3^+) < E_T(H_2)$$

A lot of controversy...

Further studies:

$$H_4^{2+}$$
, H_5^{3+} ... (hydrogenic linear chains?) $(H - He - H)^{++}$, $(He - H - He)^{3+}$... He_3^{4+} ...

Do they exist?

(ii)

A study of radiative transitions (bound-bound, bound-free) of H_2^+ , H_3^{2+} etc

(iii)

The effects of magnetic line curvature

(iv)

(Sub)-atomic traps?