Molecular Systems in a Strong Magnetic Field

Alexander V. Turbiner ICN-UNAM, Mexico

London, April 2006

The goal:
How

ATOMIC - MOLECULAR PHYSICS

IN a strong MAGNETIC FIELD
looks like

A particular overview of one-two electron molecular systems made out of protons and/or α-particles which do exist in a strong magnetic field

$$
B \leq 4.414 \times 10^{13} G
$$

(in collaboration with J.C. Lopez Vieyra \& N. Guevara)
$1 e:$
$H, H_{2}^{+}, H_{3}^{2+}, H_{4}^{3+}$
$(H e H)^{2+},(H-H e-H)^{3+},(H e-H-H e)^{4+}$
$H e^{+}, \quad H e_{2}^{3+}$
(the list is complete for $B \leq 4.414 \times 10^{13} \mathrm{G}$)
$2 e:$
$H^{-}, H_{2}, H_{3}^{+}, H_{4}^{2+}, H_{5}^{3+}$ etc
$(H e H)^{+}$etc
He, $H e_{2}^{2+}$ etc
H-atom is stable but has a highest total energy among $1 e$ systems

NEUTRON STARS

core
vacuum

Chandra + XMM-Newton data
(Hailey \& Mori, 2003)

Two absorption lines:

$$
E_{1}=730 \pm 100 \mathrm{eV}
$$

$$
E_{2}=1400 \pm 130 \mathrm{eV}
$$

Why the problem is so difficult ?

- Highly-non-uniform asymptotics of potential at large distances
- Weakly-bound states

$$
E_{\text {binding }} \ll E_{\text {total }}
$$

(e.g. for H_{2}^{+}at $B=10^{13} \mathrm{G}$ the ratio is $\lesssim 10^{-2}$)

Method

- Variational Calculation
- Simple and unique trial functions applicable for the whole range of accessible magnetic fields $\left(0-4.414 \times 10^{13} G\right)$ which can lead to a sufficiently high accuracy in total energy How to choose trial functions?
\star Physical relevance (as many as possible physics properties should be encoded)
\star Mathematical (computational) simplicity should not be a guiding principle
\checkmark Resulting perturbation theory should be convergent (see below)

For chosen $\Psi_{\text {trial }}$ a trial Potential

$$
V_{\text {trial }}=\frac{\nabla^{2} \Psi_{\text {trial }}}{\Psi_{\text {trial }}}, E_{\text {trial }}=0
$$

hence, we know the Hamiltonian for which the normalized $\Psi_{\text {trial }}$ is eigenfunction

$$
H_{\text {trial }} \Psi_{\text {trial }}=\left[p^{2}+V_{\text {trial }}\right] \Psi_{\text {trial }}=0
$$

then

$$
\begin{aligned}
E_{v a r} & =\int \Psi_{\text {trial }}^{*} H \Psi_{\text {trial }} \\
& =\int \psi_{\text {trial }}^{*} \underbrace{H_{\text {trial }} \Psi_{\text {trial }}}_{=0}+\int \Psi_{\text {trial }}^{*}\left(H-H_{\text {trial }}\right) \Psi_{\text {trial }} \\
& =0+\int \Psi_{\text {trial }}^{*}\left(V-V_{\text {trial }}\right) \Psi_{\text {trial }} "+\ldots " \equiv E_{0}+E_{1} "+\ldots "
\end{aligned}
$$

- The variational energy is a sum of the first two terms of a certain perturbative series with perturbation $\left(V-V_{t r i a l}\right)$,
\checkmark How to calculate E_{2} in practice? - in general, unsolved yet

INSTRUCTIVE EXAMPLE

Hydrogen in a magnetic field (ground state)

$$
\begin{gathered}
V=-\frac{2}{r}+\frac{B^{2}}{4} \rho^{2}, \quad \rho^{2}=x^{2}+y^{2} . \\
\psi_{0}=\exp \left(-\alpha r-\beta B \rho^{2} / 4\right)
\end{gathered}
$$

α, β variational parameters
with

$$
V_{0}=\frac{\Delta \psi_{0}}{\psi_{0}}=-\frac{2 \alpha}{r}+\frac{\beta^{2} B^{2}}{4} \rho^{2}+\underbrace{\frac{\alpha \beta B}{2} \frac{\rho^{2}}{r}}_{V-V_{0}}, \quad E_{0}=-\alpha^{2}+\beta B
$$

Relative accuracy $\sim 10^{-4}$ in total energy comparing to an accurate calculation.

REMARK (A.Potekhin \& AT '01):
$\psi_{0}=\exp \left(-\sqrt{\alpha^{2} r^{2}+\left(\gamma_{1} r^{3}+\gamma_{2} r^{2} \rho+\gamma_{3} r \rho^{2}+\gamma_{4} \rho^{3}\right)+\beta^{2} B^{2} \rho^{4} / 16}\right)$
gives relative accuracy $\sim 10^{-7}$ in total energy for magnetic fields $0<B<4.414 \times 10^{13} \mathrm{G}$.

$$
\begin{aligned}
H: & E_{b}(10000 \text { a.u. })=27.95 R y \\
H e^{+}: & E_{b}(10000 \text { a.u. })=78.43 R y
\end{aligned}
$$

- Hydrogen atom in a magnetic field (ground state)

$$
V=-\frac{2}{r}+\frac{B^{2}}{4}\left(x^{2}+y^{2}\right) \quad, \quad 0 \leq B \leq B_{\text {Schwinger }}
$$

several hundred articles since 1926, but quadrupole moment is calculated in 2001 only

Howard-Hasegawa ('61) found leading term in asymptotics

$$
E_{\text {binding }}=\log ^{2} B+\ldots \quad, \quad B \rightarrow \infty
$$

but at 2003 only (!) Karnakov-Popov paid attention (and tried to fix) that even at the Schwinger limit $B=B_{\text {Schwinger }}\left(\approx 2 \times 10^{4}\right.$ a.u. $)$ the ratio

$$
\frac{E_{\text {binding }}^{\text {exact }}}{\log ^{2} B} \approx 1 / 3
$$

asymptotics is delayed and ...

NO DOMAIN OF APPLICABILITY OF ASYMPTOTIC METHODS in

 non-relativistic domain of B

Trial Functions for H_{2}^{+}

(I)

$$
\psi_{1}=\underbrace{e^{-\alpha_{1}\left(r_{1}+r_{2}\right)}}_{\text {Heitler-London }} \underbrace{e^{-\beta_{1} B \rho^{2} / 4}}_{\text {Landau }}
$$

α_{1}, β_{1}, R variational parameters

$$
\begin{aligned}
V_{1}^{\text {trial }}= & -2 \alpha_{1}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\beta_{1}{ }^{2} \frac{B^{2} \rho^{2}}{4}+2 \alpha_{1}{ }^{2}-\beta_{1} B \\
& +\underbrace{2 \alpha_{1}{ }^{2} \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}+\alpha_{1} \beta_{1} B \rho^{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)}_{V-V_{\text {trial }}}
\end{aligned}
$$

- $\alpha_{1}, \beta_{1} \neq 1$
(anti) screening of the nuclear charges and of the magnetic field, respectively
- We assume that the modified Heitler-London approximation can give a significant contribution for internuclear distances near equilibrium.
'Covalent' coupling of the system to be verified a posteriori
II)

$$
\psi_{2}=\underbrace{\left(e^{-\alpha_{2} r_{1}}+\sigma e^{-\alpha_{2} r_{1}}\right)}_{\text {Hund-Mulliken }} e^{-\beta_{2} B \rho^{2} / 4}
$$

$\checkmark \alpha_{2}, \beta_{2}, R$ are variational parameters.

- We assume that this function can give a significant contribution for large internuclear distances
\checkmark 'Ionic' coupling, $H+p$ (to be verified a posterior).

In order to describe both domains $R \simeq R_{e q}$ and

$$
R \gg R_{e q}
$$

III-1 Non-linear Interpolation (simplest)

$$
\psi_{3_{1}}=\underbrace{\left(e^{-\alpha_{3} r_{1}-\alpha_{4} r_{2}}+\sigma e^{-\alpha_{3} r_{2}-\alpha_{4} r_{1}}\right)}_{\text {Guillemin-Zener }} e^{-\beta_{3} B \rho^{2} / 4}
$$

\bullet If $\alpha_{3}=\alpha_{4} \quad$ then $\quad \psi_{3_{1}} \rightarrow \psi_{1}$
\leftrightarrow If $\alpha_{4}=0 \quad$ then $\quad \psi_{3_{1}} \rightarrow \psi_{2}$
\checkmark Ionic \leftrightarrow covalent coupling interpolation (verified a posterior).
$\leftrightarrow \alpha_{3}, \alpha_{4}, \beta_{3}, R$ are variational parameters
III-2 Linear Interpolation

$$
\psi_{3_{2}}=A_{1} \psi_{1}+A_{2} \psi_{2}
$$

(IV) Superposition of the two kinds of interpolation

$$
\psi_{4}=A_{3_{1}} \psi_{3_{1}}+A_{3_{2}} \psi_{3_{2}}
$$

- 10 variational parameters
- ψ_{4} gives the lowest total energies for the ground state compared with previous calculations (~ 50 calculations) for $B>10^{10} G$ up to $B=4.414 \times 10^{13} G$,
- For $B \lesssim 10^{10} G$: Relative accuracy $\sim 10^{-5}$ in binding energy (comparing to the most accurate calculation by Guan et al '03)
\uparrow Excited states $1 \sigma_{u}, 1 \pi_{g, u}, 1 \delta_{g, u}$ were studied in details Physical Phenomenon:

For $B \sim 5 \times 10^{11} G$ the coupling changes from 'ionic' type to 'covalent' type

(ppe) system
$H_{2}^{+}:$inclined configuration
(The molecular axis and magnetic line form angle θ)

Parallel configuration is optimal for all magnetic fields

- H_{2}^{+}does not exist for large inclinations at $B>10^{11} \mathrm{G}$
H_{2}^{+}is stable for all B and the most bound 1e-system made from protons for $B \lesssim 10^{13} G$

$$
\begin{gathered}
H_{2}^{+} \nrightarrow H+p \\
E_{b}\left(10^{12} G\right)=17.14 R y, E_{b}(10000 \text { a.u. })=45.80 R y \\
\text { comparison with } H: E_{b}(10000 \text { a.u. })=27.95 R y \\
\Delta E\left(1 \sigma_{g} \rightarrow 1 \pi_{u}\right)=11.73 \text { Ry at } 10000 \text { a.u. }
\end{gathered}
$$

```
(pppe) system
```

$$
H_{3}^{2+} \text { : linear parallel configuration }
$$

(The molecular axis and magnetic line coincide)

$$
V=\frac{2}{R_{-}}+\frac{2}{R_{+}}+\frac{2}{R_{-}+R_{+}}-\frac{2}{r_{1}}-\frac{2}{r_{2}}-\frac{2}{r_{3}}+\frac{B^{2}\left(x^{2}+y^{2}\right)}{4},
$$

For $B \gtrsim 10^{11} G$ the system (pppe) has a bound state, which manifests existence of the exotic molecular ion H_{3}^{2+}
(A.T., J.C. López V. and U. Solis H. '99)
(Without magnetic field H_{3}^{2+} does NOT exist!)

H_{3}^{2+} ion can exist for $B \gtrsim 10^{11} G$ as well as its excited states $1 \pi_{u}, 1 \delta_{g}$

$$
\begin{gathered}
H_{3}^{2+} \rightarrow H_{2}^{+}+p \\
H_{3}^{2+} \nrightarrow H+p+p
\end{gathered}
$$

H_{3}^{2+} is stable and the most bound $1 e$-system made from protons for $B \gtrsim 3 \times 10^{13} G$

$$
\begin{aligned}
H_{3}^{2+} & \nrightarrow H_{2}^{+}+p \\
& * * *
\end{aligned}
$$

$$
E_{b}(10000 \text { a.u. })=45.41 R y
$$

$$
\Delta E\left(1 \sigma_{g} \rightarrow 1 \pi_{u}\right)=12.78 \text { Ry at } 10000 \text { a.u. }
$$

H_{3}^{2+} ion (triangular configuration)

Does the system (pppe) in equilateral triangular configuration have a bound state in a magnetic field?

At $B<10^{8} G$ or $B>10^{11} G$ the total energy $E(R)$ has no minimum at finite R

At $10^{8} G \lesssim B \lesssim 10^{11} G$ the total energy $E(R)$ has a well-pronounced minimum at finite R manifesting existence of H_{3}^{2+} in triangular configuration as a metastable (or unstable) system

precursor to linear configuration

No more spatial configurations found! (A.T. and J.C. López V. '02)

(ppppe) system

$$
H_{4}^{3+} \text { molecular ion (Parallel Configuration) }
$$

(J.C. López V. and A.T. '00, H.Olivares P. '04)

For $B \gtrsim 10^{13} G$ the system (ppppe) has a minimum in total energy
\rightarrow the existence of the molecular ion $H_{4}^{(3+)}$ as metastable state as well as its excited state $1 \pi_{u}$

$$
E_{b}\left(3 \times 10^{13} G\right)=38.42 R y
$$

(ape) system
$(\mathrm{HeH})^{(2+)}$ molecular ion
(A.T. and J.C. López V. '04)

- For $B \gtrsim 10^{12} \mathrm{G}$ the system ($\alpha p e$) has a bound state manifesting the possible existence of the molecular ion $(\mathrm{HeH})^{(2+)}$ as well as its excited states $1 \pi, 1 \delta$
- For $B \gtrsim 10^{13} \mathrm{G}$ it becomes stable:
$(\mathrm{HeH})^{(2+)} \nrightarrow H e^{+}+p$
- Parallel Configuration is always optimal

$$
E_{b}(10000 \text { a.u. })=77.30 R y
$$

$$
\Delta E(1 \sigma \rightarrow 1 \pi)=20.80 \text { Ry at } 10000 \text { a.u. }
$$

($\alpha \alpha e)$ system
$H e_{2}^{(3+)}$ molecular ion
(A.T. and J.C. López V. '04)

- For $B \gtrsim 2 \times 10^{11} \mathrm{G}$ the system $(\alpha \alpha e)$ has bound states manifesting the existence of the molecular ion $H e_{2}^{(3+)}$ as well as its excited states of positive parity $1 \pi_{u}, 1 \delta_{g}$.
- For $B \gtrsim 10^{12} \mathrm{G}$ it becomes stable:
$H e_{2}^{(3+)} \nrightarrow H e^{+}+\alpha$
- Parallel Configuration is always optimal

$$
\begin{gathered}
E_{b}(10000 \text { a.u. })=86.23 R y \quad\left[E_{b}^{H e^{+}}(10000 \text { a.u. })=78.43 R y\right] \\
\Delta E\left(1 \sigma_{g} \rightarrow 1 \pi_{u}\right)=24.69 R y \text { at } 10000 \text { a.u. }
\end{gathered}
$$

The striking relation between the binding energies of the most bound one-electron systems made from α-particles and made from protons:

$$
E_{b}^{H e^{+}, H e_{2}^{(3+)}} \approx 2 E_{b}^{H_{2}^{+}, H_{3}^{2+}}
$$

for $10^{11} G<B<10^{14} G$

- For $B<10^{12} G$ in l.h.s. E_{b} of $H e^{+}$, otherwise E_{b} of the exotic $H e_{2}^{3+}$
- For $B<10^{13} G$ in r.h.s. E_{b} of H_{2}^{+}, otherwise E_{b} of the exotic H_{3}^{2+}

Summary

One-electron linear systems
 (for details see recent Physics Reports)

Optimal configuration of linear $H_{2}^{+}, H_{3}^{2+}, H_{4}^{(3+)},(\mathrm{HeH})^{2+}$ and $\mathrm{He}_{2}^{(3+)}$ is parallel, along magnetic field (when exist)
when magnetic field grows:
\checkmark Binding energy of $H, H_{2}^{+}, H_{3}^{2+}, H_{4}^{3+},(H e H)^{2+}$ and $H e_{2}^{3+}$ grows (when exist)

- Natural size of the systems $H_{2}^{+}, H_{3}^{2+},(\mathrm{HeH})^{2+}$ and $H e_{2}^{3+}$ decreases
- H_{2}^{+}has the lowest $E_{\text {total }}$ for $0<B \lesssim 10^{13} G$ (made from protons)
- H_{3}^{2+} has the lowest $E_{\text {total }}$ for $B \gtrsim 10^{13} G$ (made from protons)
- Possible existence of the system $H_{5}^{(4+)}$ for $B>4.4 \times 10^{13} G$; but a reliable statement requires a consideration of relativistic corrections
- For $B \gtrsim 10^{12} G$ the exotic $H e_{2}^{3+}$ has the lowest total energy among systems made from protons and/or α-particles
- H_{2}^{+}and linear H_{3}^{2+} binding energies \equiv ionization energies at $B \sim 3 \times 10^{13} \mathbf{G}$ coincide, both are $\sim 700 \mathrm{eV}$, while for $H e_{2}^{3+}$ it is $\sim 1400 \mathrm{eV}$
\checkmark Something non-trial may happen at the Schwinger limit $B \sim 4.414 \times 10^{13} \mathrm{G}$ (see Table)
- Technical point:

Many even quite sophisticated methods allow to find 1,2,3 significant digits in binding energy (e.g. E. Salpeter et al '92 for H_{2}^{+}at $10^{11} G$ gives a single digit only), a problem comes when you want to go beyond, to higher accuracy.

$$
\begin{aligned}
& \text { (Zee) } \\
& \xrightarrow{\boldsymbol{B}}\left(\begin{array}{ccc}
\text { ie } & \boldsymbol{e} & \text { Zn } \\
\bigcirc & \bullet & \bigcirc
\end{array}\right. \\
& E_{\text {Coulomb }}=\frac{Z(\mathrm{Z}-4)}{R}, \text { for } \mathrm{Z}=1,2,3 \quad E_{\text {Coulomb }}<0
\end{aligned}
$$

(ZZcZe)

$$
E_{\text {Coulomb }}=\frac{Z(3 Z-16)}{3 R}+\frac{4 Z c(Z-1)}{R}
$$

TWO ELECTRON SYSTEMS

> (preliminary results)
> Ground State \Rightarrow Existence

$$
B=0
$$

$$
H_{2}
$$

$E_{B O}=-2.3469$ Ry (James and Coolidge, 15 parameters) $E_{B O}=-2.3478$ Ry (Heidelberg group, >2000 gaussian orbitals)
$E_{B O}=-2.3484$ Ry (A.T., N.Guevara, 14 parameters)
$E_{B O}=-2.3489 \mathrm{Ry}$ (record calculations, $\gtrsim 1000 \mathrm{~J}-\mathrm{C}$ type functions)

$$
H_{3}^{+}
$$

(Lowest Linear Spin-Triplet State)
$E_{B O}=-2.2284 \mathrm{Ry}\left(\right.$ Schaad et al, $\left.{ }^{\prime} 74, \mathrm{CI}\right)$
$E_{B O}=-2.2298$ Ry (A.T., J.C.Lopez V., N.Guevara, 22 parameters)
$E_{B O}=-2.2322$ (Clementi et al '91, CI + J-C type)

Electronic correlation appears in explicit form $\exp \left(a r_{12}\right)$ in trial functions

H_{3}^{+}(first detailed study, A.T., N. Guevara, J.C. Lopez V. '06)
(linear, parallel configuration, the lowest states)

Basic trial function:

$$
\begin{aligned}
& \psi^{(t r i a l)}=\left(1+\sigma_{e} P_{12}\right) \\
&\left(1+\sigma_{N} P_{a c}\right)\left(1+\sigma_{N_{a}} P_{a b}+\sigma_{N_{a}} P_{b c}\right) \\
& \rho_{1}^{|m|} e^{i m \phi_{1}} e^{\gamma r_{12}} e^{-\alpha_{1} r_{1 a}-\alpha_{2} r_{1 b}-\alpha_{3} r_{1 c}-\alpha_{4} r_{2 a}-\alpha_{5} r_{2 b}-\alpha_{6} r_{2 c}-B \beta_{1} \frac{\rho_{1}^{2}}{4}-B \beta_{2} \frac{\rho_{2}^{2}}{4}}
\end{aligned}
$$ and its possible degenerations.

Optimal configuration:
linear, parallel, symmetric $\left(R_{+}=R_{-}\right)$,
it is stable towards all small deviations

$$
-\quad-5 \mathrm{Ry} \frac{-5 \mathrm{Ry}}{(\text { Reference } \quad \text { Points })} \quad-9 \mathrm{Ry} \frac{{ }^{3} \Pi_{u}}{-18.915 \mathrm{Ry}}-1 \mathrm{Ry}_{\mathrm{Ry}}^{\mathrm{Ry}}
$$

$$
B=0 \quad B=1 \text { a.u. } \quad B=10 \text { a.u. } \quad B=100 \text { a.u. }
$$

$$
\left(1 \text { a.u. }=2.35 \times 10^{9} \mathrm{G}\right)
$$

Low-lying states of the H_{3}^{+}in a magnetic field in parallel configuration

$$
\begin{aligned}
& { }^{{ }^{3} \Pi_{u}} \quad-3.0266 \mathrm{Ry} \quad \stackrel{{ }^{3} \Sigma_{g}}{ } \quad-6.920 \mathrm{Ry} \xrightarrow{{ }^{3} \Delta_{g}} \quad-16.92 \mathrm{Ry} \\
& \begin{array}{rrrr}
{ }^{3} \Sigma_{g} & -3.3231 \mathrm{Ry}{ }^{\mathrm{Ry}} \Pi_{u} & -7.4901 \mathrm{Ry}^{3} \Sigma_{u} & -17.525 \mathrm{Ry} \\
{ }^{3} \Sigma_{u} & -3.6366 \mathrm{Ry} & & \\
& \underline{{ }^{3} \Sigma_{u}} & -7.8765 \mathrm{Ry} &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{{ }^{1} \Sigma_{u}} \quad-1.3256 \mathrm{Ry} \\
& { }^{3} \Delta_{u} \quad-5.722_{\mathrm{Ry}}
\end{aligned}
$$

H_{3}^{+}: ground state

Parallel configuration is optimal,
always stable

At $B=10000$ a.u.

$$
E_{T}=-95.21 R y
$$

$$
E_{T}\left(H_{2}\left({ }^{3} \Pi_{u}\right)\right)=-71.34 R y, E_{T}\left(H_{2}^{+}\left(1 \pi_{u}\right)+H(1 s)\right)=-62.02 R y
$$

$H e_{2}^{2+}: \quad$ ground state (the first study)

Parallel configuration is optimal, metastable at $B<0.2$ a.u. $\left(H e_{2}^{2+} \rightarrow H e^{+}+H e^{+}\right)$
stable at $B>1000$ a.u., otherwise does not exist!

At $B=10000$ a.u.

$$
E_{T}=-174.506 R y
$$

$$
\begin{gathered}
E_{T}\left(H e^{+}+H e^{+}\right)=-156.85 R y(1 s 1 s),=-137.26 R y\left(1 s 2 p_{-1}\right) \\
E_{T}\left(H e_{2}^{3+}\left(1 \sigma_{g}\right)+e\right)=-86.233
\end{gathered}
$$

Parallel configuration is optimal, stable, when exists, but always

$$
E_{T}\left(H_{3}^{+}\right)<E_{T}\left(H_{2}\right)
$$

A lot of controversy...

Further studies:
(i)
$H_{4}^{2+}, H_{5}^{3+} \ldots$ (hydrogenic linear chains?)
$(H-H e-H)^{++},(H e-H-H e)^{3+} \ldots$
$H e_{3}^{4+} \ldots$
Do they exist?
(ii)

A study of radiative transitions
(bound-bound, bound-free)
of H_{2}^{+}, H_{3}^{2+} etc
(iii)

The effects of magnetic line curvature
(iv)
(Sub)-atomic traps?

