# H<sub>3</sub><sup>+</sup> in the Diffuse Interstellar Medium The Problem of the Ionization

Franck Le Petit & Evelyne Roueff UTH - Observatoire de Paris-Meudon

## **Diffuse clouds**

## **Properties:**

- Density:  $n_H \approx 100 \text{ cm}^{-3}$
- embedded in the ISRF
- Kinetic temperature  $T_{kin} \approx T_{01} \approx 70 \text{ K}$
- Transition between atomic and molecular hydrogen

## **Observation** in absorption possible

- Far UV : H, H<sub>2</sub>, HD, CO, ...
- Visible: OH, CH, CH<sup>+</sup>, CN,
  - C<sub>2</sub>, C<sub>3</sub>, ...
- IR: H<sub>3</sub><sup>+</sup>
- Radio : HCO<sup>+</sup>, HOC<sup>+</sup>, NH<sub>3</sub>, HCN, HNC, H<sub>2</sub>S, ...





#### Interest to study diffuse clouds

Simple chemistry → good place to understand the physics of ISM

## **Two fundamental questions:**

## dissipation of energy

- formation process of CH<sup>+</sup>
- rotationnal excitation of H<sub>2</sub>

## ionization

• the formation of many molecules is initiated by cosmic rays ionization  $H_3^+$ , HD, OH, ...

| Formation:   | $H_2 + cosm. ray \longrightarrow H_2^+ + e^-$<br>$H_2^+ + H_2 \longrightarrow H_3^+ + H_3$ | k = 0.96 × ζ<br>k = 2.1 10 <sup>-9</sup>          |
|--------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|
| Destruction: | H <sub>3</sub> <sup>+</sup> + e <sup>-</sup> ▶                                             | k = 6.80×10 <sup>-8</sup> (T/300) <sup>-0.5</sup> |

n(HD), n(OH), n(H<sub>3</sub><sup>+</sup>) ∝ ζ

#### Determination of the ionization rate by cosmic rays

(Black et Dalgarno 1973, Black et al. 1978, Federman et al. 1996, Le Petit et al. 2001)



## H<sub>3</sub><sup>+</sup> in diffuse clouds

Observation:

| - detected on 8 diffuse lines of sight $N(H_3^+) / E(B-V) \sim \text{some } 10^{14}$ |                               | E(B-V) | N(H <sub>3</sub> <sup>+</sup> ) |
|--------------------------------------------------------------------------------------|-------------------------------|--------|---------------------------------|
| => 10 × higher than dense clouds                                                     | Cyg. OB2 12                   | 3.35   | 2.02 (14)                       |
| - in diffuse medium near the Galactic center                                         | Cyg. OB2 5                    | 1.99   | ~ 3 (14)                        |
| (Oka et al. 2005)                                                                    | HD 183143                     | 1.28   | ~ 2 (14)                        |
|                                                                                      | HD 20041                      | 0.70   | 1.74 (14)                       |
| Model: n <sub>H</sub> = 100 cm <sup>-3</sup><br>χ = 1                                | WR 104                        | 2.10   | ~ 2 (14)                        |
| T = 60 K<br>ζ = 5 ×10 <sup>17</sup> s <sup>-1</sup>                                  | WR 118                        | 4.13   | ~ 4 (14)                        |
| $N_{\rm H} = 10^{21}  {\rm cm}^{-2}$                                                 | WR 121                        | 1.68   | 1.12 (14)                       |
| $\downarrow$                                                                         | ζPer                          | 0.32   | 8.0 (13)                        |
| $N(H_3^+) = 8 \times 10^{12} \text{ cm}^{-2}$                                        | Gal. center                   |        | 3.1 (15)                        |
|                                                                                      | Ref <sup>.</sup> McCall et al | (2002) |                                 |

00Z) McCall et al. (2003) Oka et al. (2005)

## The Zeta Per line of sight

A very well studied line of sight

Spectral type : B1  $R_V = 2.8$  (Cardelli et al. 1989) E(B-V) = 0.32 (van Dishoeck & Black 1989)

A very good test for models

|                      | Observation    |
|----------------------|----------------|
| H <sub>2</sub>       | 3.2 - 7.1 (20) |
| H <sub>2</sub> (J=0) | 2.2 - 4.8 (20) |
| H <sub>2</sub> (J=1) | 1.0 - 2.3 (20) |
| H <sub>2</sub> (J=2) | 1.1 - 2.4 (18) |
| H <sub>2</sub> (J=3) | 2.0 - 9.6 (16) |
| H <sub>2</sub> (J=4) | 1.1 - 2.0 (15) |
| H <sub>2</sub> (J=5) | 2.3 - 2.8 (14) |

|                  | Observ  | ations/ |
|------------------|---------|---------|
| Н                | 5.7(20) | 7.1(20) |
| $H_2$            | 3.2(20) | 7.1(20) |
| f                | 0.53    | 0.66    |
| T <sub>01</sub>  | 45      | 75      |
| HD               | 2.0(15) | 1.1(16) |
| H <sub>3</sub> + | 8.0(13) |         |
| C <sup>+</sup>   | 1.8(17) |         |
| С                | 2.9(15) | 3.6(15) |
| CO               | 5.4(14) |         |
| CH               | 1.9(13) | 2.0(13) |
| CH⁺              | 3.5(12) |         |
| C <sub>2</sub>   | 1.6(13) | 2.2(13) |
| C <sub>3</sub>   | 1.0(12) |         |
| CN               | 2.7(12) | 3.3(12) |
| NH               | 9.0(11) |         |
| 0                | 0.2(18) | 1.0(18) |
| OH               | 4.0(13) |         |
| S+               | 1.7(16) | 2.3(16) |
| S                | 1.5(13) | 2.2(13) |
| Si⁺              | 2.8(16) | 2.8(14) |

## **Determination of the flux of cosmic rays**



 van Dishoeck & Black (1986) all constraints taken into account (at this time ...) models with T and n<sub>H</sub> profile

ζ = 4-7×10<sup>-17</sup> s<sup>-1</sup>

• Federman et al. (1996) From OH only : ζ = 1.7×10<sup>-17</sup> s<sup>-1</sup>



Comparison of  $\zeta$  between different authors not always simple:

H + cosm. ray
$$\rightarrow$$
 H<sup>+</sup> + e<sup>-</sup>k = 0.46 ×  $\zeta$  (s<sup>-1</sup>) - Prassad & Huntress (1980)H2 + cosm. ray $\rightarrow$  H2<sup>+</sup> + e<sup>-</sup>k = 0.96 ×  $\zeta$  (s<sup>-1</sup>) - A. Dalgarno (priv. com.)H + HH + Hk = 1.50 ×  $\zeta$  (s<sup>-1</sup>) - A. Dalgarno (priv. com.)H<sup>+</sup> + H + e<sup>-</sup>k = 0.04 ×  $\zeta$  (s<sup>-1</sup>) - A. Dalgarno (priv. com.)

**The Meudon PDR code** (http://aristote.obspm.fr/MIS)



Stationnary model solving:

- Radiative transfer: absorption in the lines of H, H<sub>2</sub>, CO, HD, ... absorption in the continuum
- Chemistry: more than 100 chemical species network of more than 1000 chemical reactions photoionization
- Statistical equilibrium of the populations in the levels of H<sub>2</sub>, HD, CO, HCO<sup>+</sup>, CS, ... takes into account: radiative and collisional excitation / de-excitations photodissociation
- Thermal balance: heating by photoelectric effect, chemistry, cosmic rays ... cooling in the lines of atoms and molecules

#### Modelisation of the $\zeta$ Per line of sight

(Franck Le Petit, Evelyne Roueff & Eric Herbst, A&A, 2004)

#### **Parameters and hypothesis :**

 $R_V = 2.8$ Isothermal model :  $T_{01} = 60 \text{ K}$  (45-75 K)  $N(H_2) = 4.5 \times 10^{20} \text{ cm}^{-2}$ 

n<sub>H</sub> = 100 cm<sup>-3</sup> χ= 2

|      | Relative  |
|------|-----------|
|      | abundance |
| D/H  | 1.5 (-5)  |
| O/H  | 3.2 (-4)  |
| N/H  | 7.5 (-5)  |
| C/H  | 1.32 (-4) |
| S/H  | 1.86 (-5) |
| Si/H | 2.9 (-5)  |
|      |           |

Variation of  $\zeta$  between 1 ×10<sup>-17</sup> and 100 ×10<sup>-17</sup> s<sup>-1</sup>  $\Leftrightarrow$  effect on species sensible to  $\zeta$ 

## Determination of $\zeta$ from H<sub>3</sub><sup>+</sup>



Depends on T

Observations require :  $\zeta \sim 100 \times 10^{-17} \text{ cm}^{-3}$ 

#### Determination of $\zeta$ from OH

n(OH) is highly dependent on T

H<sup>+</sup> + O  $\longrightarrow$  O<sup>+</sup> + H  $k = 6 \times 10^{-10} \text{ e}^{-227/\text{T}} \text{ cm}^3 \text{ s}^{-1}$ 45 K  $k = 3.9 \ 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ 75 K  $k = 2.9 \ 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ 





**n(HD)**  $\propto \zeta$  if : 1) It is formed in gas phase by D<sup>+</sup> + H<sub>2</sub> 2) It is destroyed by photodissociation

after the D/HD transition :

 $HD + H_3^+ \longrightarrow H_2D^+ + H$ 

n(HD) no more proportionnal to  $\zeta$ 



- still some debates on D/H
- difficult to get a precise value of N(HD)

Determination of N(HD) requires to know precisely the b Doppler parameter

## <u>Towards ζ Per :</u>

- Only HD at 1054 Ang. detected
- flat part of the curve of growth
- Re-analysis with updated H<sub>2</sub>, f values (Abgrall et al. 1993)
  - max value: 1.1 × 10<sup>16</sup> cm<sup>-2</sup>
  - instead of 5.1 × 10<sup>15</sup> cm<sup>-2</sup> (Snow 1977)

Other lines of sight: same problem



Conclusion from N(HD) :

 $\zeta$ > 5 10<sup>-17</sup> s<sup>-1</sup> overestimates slightly N(HD)

(with D/H =  $1.5 \ 10^{-5}$ )

#### The neutral and ionized atoms

High  $\zeta$  increases the ionization degree

Efficient recombination with electrons : S<sup>+</sup> does not react with H or H<sub>2</sub> reactive recombination dominates







## Conclusion about the $\zeta$ Per line of sight

| $n_{\rm el} = 100 \ {\rm cm}^{-3} \ \gamma = 2$ | ζ                                    | $H_3^+$             | OH                  | HD                  | S                   |
|-------------------------------------------------|--------------------------------------|---------------------|---------------------|---------------------|---------------------|
| T = 60  K,                                      | [10 <sup>-17</sup> s <sup>-1</sup> ] | [cm <sup>-2</sup> ] | [cm <sup>-2</sup> ] | [cm <sup>-2</sup> ] | [cm <sup>-2</sup> ] |
| $N(H_2) = 4.5 \ 10^{20} \ cm^{-2}$              | 1                                    | 1.5 (12)            | 1.6 (12)            | 1.7 (15)            | 1.7 (13)            |
|                                                 | 25                                   | 3.0 (13)            | 4.1 (13)            | 1.5 (16)            | 2.6 (13)            |
| <ul> <li>Standard value of ζ</li> </ul>         | 100                                  | 6.3 (13)            | 1.4 (14)            | 2.0 (16)            | 8.2 (13)            |
| Underestimate N(H <sub>3</sub> <sup>+</sup> )   |                                      | 8.0 (14)            | 4.0 (13)            | 2.0 (15)            | 1.5 (13)            |
| by a factor 50                                  | ODS.                                 |                     |                     | 1.1 (16)            | 2.2 (13)            |

•  $\zeta$  = 100 times the standard value and T = 60 K

Reproduce  $N(H_3^+)$  but overproduce OH by a factor 4 S by a factor 6

T can be decreased to 45 K to match better OH negative impact on C, S,  $H_3^+$ 

 $\chi$  can be increased to match better S molecules too much photodissociated

•  $\zeta = 25 \times 10^{-17}$  s<sup>-1</sup> good compromise to fit all abundances

## H<sub>3</sub><sup>+</sup> towards the Galactic center

Observations (Oka et al. 2005)

| Clouds                  |              |                                      | Т             | n         |           |            |           |                     |
|-------------------------|--------------|--------------------------------------|---------------|-----------|-----------|------------|-----------|---------------------|
|                         |              | [10 <sup>14</sup> cm <sup>-2</sup> ] |               |           |           |            |           | [cm <sup>-3</sup> ] |
|                         | (1,1)        | (3,3) (2,2) (1,0) HM Tota            |               |           |           |            |           |                     |
| -100 km s <sup>-1</sup> | 7.0±0.8      | 4.4 ± 0.9                            | ≤ 0.7         | 2.9 ± 1.0 | 1.4 ± 0.7 | 15.7 ± 1.7 | 270 ± 70  | ≤ <b>5</b> 0        |
| -50 km s <sup>-1</sup>  | 2.6 ±<br>0.5 | 1.6 ± 0.6                            | $0.4 \pm 0.4$ | 1.6 ± 0.9 | 0.4 ± 0.2 | 6.6 ± 1.3  | 250 ± 100 | ≤ 100               |
| 0 km s⁻¹                | 4.9 ± 05     | 1.0 ± 07                             | ≤ 0.7         | 2.4 ± 1.3 | 0.1 ± 0.1 | 8.4 ± 1.6  | 130 ± 100 | ≤ 200               |

Constraints : Populations  $N(H_3^+)$   $N(CO, J=0) < 3 \ 10^{16}$ f = 0.5 - 1

## H<sub>3</sub><sup>+</sup> excitation

• Oka & Epp (2004) prescription for collision rates:

$$k_{JK}^{J'K'} = C_{JK}^{J'K'} \sqrt{\frac{g_{JK}}{g_{J'K'}}} \exp\left(-\frac{E_{JK} - E_{J'K'}}{2kT}\right)$$
$$C_{JK}^{J'K'} = C_{J'K'}^{JK} = C\left\{1 + \sum_{J''K''} \left(\frac{g_{J''K''}}{\sqrt{g_{JK}g_{J'K'}}}\right)^{1/2} \exp\left[-\frac{E_{J''K''} - (1/2)(E_{JK} + E_{J'K'})}{2kT}\right]\right\}^{-1}$$
$$C = 2 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1} \text{ : Langevin rate constant for } H_3^+ + H_2$$

Т (K)

• Einstein coefficients from Lindsay & McCall (2001)

Small program to compute  $H_3^+$  excitation  $\Rightarrow$  same results than Oka & Epp (2004)







Reduction of C<sub>langevin</sub> :

n-T domain reproducing the observations increases higher densities & temperatures allowed

#### New implementations in the PDR code

## 1. Statistical balance of $H_{3}^{+}$

- $H_{3^+}$  formed following a Boltzman distribution at  $T_{kin}$ 
  - Tests: formation in specific levels
    - $\checkmark$  no significant differences
- destruction independent of levels

## 2. Neutralization of atomic ions on grains



## **Isothermal PDR models**

 $\chi$  = 10, R<sub>X</sub> = 3

| n<br>[cm <sup>-3</sup> ] | ζ<br>[10 <sup>-17</sup> s <sup>-1</sup> ] | T<br>[K]   | L<br>[pc] | f        | N(CO)<br>[cm <sup>-2</sup> ] | J = 1<br>[cm <sup>-2</sup> ] | N(H <sub>3</sub> <sup>+</sup> )<br>[cm <sup>-2</sup> ] | 1,1<br>[cm <sup>-2</sup> ] | 2,2<br>[cm <sup>-2</sup> ] | 3,3<br>[cm <sup>-2</sup> ] |
|--------------------------|-------------------------------------------|------------|-----------|----------|------------------------------|------------------------------|--------------------------------------------------------|----------------------------|----------------------------|----------------------------|
|                          | 25                                        | 270        | 100       | 0.61     | 1.3 (17)                     | 6.6 (16)                     | 1.2 (15)                                               | 5.2 (14)                   | 1.2 (13)                   | 3.0 (14)                   |
| 10                       | 50                                        | 270        | 100       | 0.42     | 1.4 (17)                     | 7.0 (16)                     | 1.2 (15)                                               | 5.4 (14)                   | 1.4 (13)                   | 3.2 (14)                   |
|                          | 100                                       | 270        | 100       | 0.23     | 4.4 (16)                     | 1.7 (16)                     | 5.7 (14)                                               | 2.5 (14)                   | 7.4 (12)                   | 1.5 (14)                   |
|                          | 50                                        | 270        | 20        | 0.82     | 1.5 (17)                     | 6.6 (16)                     | 8.7 (14)                                               | 3.5 (14)                   | 3.3 (13)                   | 2.3 (14)                   |
|                          |                                           | 270        | 31        | 0.83     | 3.4 (17)                     | 1.3 (17)                     | 1.8 (15)                                               | 7.3 (14)                   | 6.9(13)                    | 4.8(14)                    |
|                          |                                           | 200        | 31        | 0.83     | 3.9 (17)                     | 1.5 (17)                     | 1.6 (15)                                               | 7.0 (14)                   | 6.0 (13)                   | 3.1 (14)                   |
| 50                       |                                           | 150        | 33        | 0.84     | 4.7 (17)                     | 1.7 (17)                     | 1.5 (15)                                               | 7.0 (14)                   | 5.4 (13)                   | 1.9 (14)                   |
|                          | 100                                       | 270        | 22        | 0.70     | 2.4 (17)                     | 1.0 (17)                     | 1.7 (15)                                               | 6.7 (14)                   | 6.9 (13)                   | 4.5 (14)                   |
|                          | 500                                       | 270        | 31        | 0.26     | 1.7 (17)                     | 8.2 (16)                     | 1.5 (15)                                               | 5.5 (14)                   | 7.5 (13)                   | 3.8 (13)                   |
| Observations             |                                           | min<br>max | 15-20     | 0.5<br>1 |                              | < 3 (16)                     | 1.4 (15)<br>1.7 (15)                                   | 6.2 (14)<br>7.8 (14)       | < 7 (13)                   | 3.5 (14)<br>5.3 (14)       |

#### **Thermal Balance**

How to have  $N(H_3) = 10^{14} \text{ cm}^{-2}$  in a diffuse medium ( $n_H < 50 \text{ cm}^{-3}$ ) at 270 K?







#### 2 - Vortex

Local and temporal heating of the gas allowing to overcome activation thresholds

- Introduced by K. Joulain & E. Falgarone (1998)
  - ♦ formation of CH<sup>+</sup>

 $C^+ + H_2 \longrightarrow CH^+ + H$   $k = 1.5 \ 10^{-10} \ e^{-4640/T} \ cm^3 \ s^{-1}$ 

- Cecchi-Pestelini, Casu, Dalgarno (2005) Model of vortex to compute H<sub>2</sub> excitation
  - $\clubsuit$  Reproduce rotationnal H<sub>2</sub> excitation (J > 2) in standard diffuse medium

=> test this on the  $H_3^+$  excitation