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We discuss recent progress in the calculation and identification of rotation-vibra-
tional states of H+

3 at intermediate energies up to 13000 cm−1. Our calculations are
based on the potential energy surface of Cencek et al., which is of sub micro-hartree
accuracy. As this surface includes diagonal adiabatic and relativistic corrections to
the fixed nuclei electronic energies, the remaining discrepancies between our calcu-
lated and experimental data should be due to the neglect of non-adiabatic coupling
to excited electronic states in the calculations. To account for this, our calculated
energy values were adjusted empirically by a simple correction formula. Founded on
our understanding of the adiabatic approximation we suggest two new approaches
to account for the off diagonal adiabatic correction, which should work, however
they have not been tested yet for H+

3 . Theoretical predictions made for the above-
barrier energy region of recent experimental interest are accurate to 0.35 cm−1 or
better.
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1. Introduction

There appears to be no need to explicate here the importance of H+
3 and its rotation-

vibrational states in astrophysics. The role it plays in planetary atmospheres, dense
and diffuse interstellar clouds or even in the early development of our universe will
surely be discussed and presented in great detail in this issue by those, who are
experts in these fields. The focus of our presentation will be the description and
analysis of an accurate and precise calculation of the rotation-vibrational states of
H+

3 , the most simple triatomic molecule. This is done with the aim to extrapolate
guidelines from our experience, which should be useful for similar ab initio calcu-
lations of the rotation-vibrational states of other triatomic or even more complex
molecules in the future.
We apologize for not reviewing the many other earlier ab initio calculations of the
rotation-vibrational states of H+

3 , as this has been done in the past, and by other
authors of this issue, e.g. Kutzelnigg & Jaquet (2006), Tennyson et al. (2006). At
the same time we are grateful for the highly, sub micro-hartree, accurate potential
energy surface of H+

3 , which resulted from an extensive electronic structure calcu-
lation, with the imaginative explicit inclusion of electron correlation, by Cencek et
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al. (1998). Without these data for the potential energy surface, including the rela-
tivistic and diagonal adiabatic corrections, the results we have obtained would not
have been possible. Equally valuable for the accuracy we could achieve for many
of the spectroscopically still unassigned states of H+

3 was the interaction with the
researchers of the group of T. Oka, where the spectrum of H+

3 is and has been stud-
ied expertly and extensively with high precision, see e.g. Lindsay & McCall (2001),
Gottfried et al. (2003), Gottfried (2006).
The rotation-vibrational term values were computed using the potential surface of
Cencek et al. (1998). To this end the potential surface is expressed using the ‘demo-
cratic’ hyperspherical coordinates ρ for the hyperradius and the two angles θ and
φ. The ro-vibrational wave functions are expanded in terms of the hyperspherical
harmonics ΨJM

Kνs(θ, φ, α, β, γ). This ensures that the rotation-vibrational coupling,
affected via the kinetic energy operator, is taken care of analytically and exactly.
The resulting set of coupled differential equations in the remaining coordinate, the
hyperradius ρ, were integrated numerically.
Since the deviation of the computed term values should be of the of the order of
fractions of wavenumbers, i.e. one part in 106, to be useful in the interpretation of
the observed spectral lines, it is mandatory to control accuracy and precision of all
theoretical and computational aspects carefully. An error analysis of the systematic
and random errors is called for.
To be sure, the fundamental constants needed here, the value of the proton mass,
Mp = 1836.152 672 61(85) me, and the energy conversion factor, Eh = 219 474.631
370 5(15) cm−1 are known with sufficient accuracy, generally with nine significant
figures (Mohr & Taylor 2005). The relative precision of the computed points of the
potential surface and of the diagonal adiabatic corrections is high enough to yield
potentially a deviation of the computed rotation-vibrational term values of a few
hundreds of wavenumbers. The global fit of the potential surface, however, intro-
duces uncertainties of the order of 0.1 cm−1.
Most important, however, is a careful scrutiny of the adiabatic separation between
the electronic and nuclear coordinates. For one, the discussion, whether atomic or
nuclear masses should be used in the computation of the ro-vibrational states, ap-
pears to linger on. This would introduce differences in the fourth significant figure
of the computed term values. For two, the detailed computation of the off diag-
onal adiabatic corrections for H+

3 appears to be prohibitive. Thus, the significance
of these corrections must be estimated and empirical adjustments should be made,
provided they are judged reliable in the light of the analysis.
Another important aspect, if contact is to be made between theory and experi-
ment, is the establishment of the correspondence of the computed term values with
their exact quantum numbers to the experimentally determined term value, labelled
with the approximate quantum numbers as used in spectroscopic work. This asso-
ciation is relatively straight forward for the lower levels, however, for term values
above 10000 cm−1, where the molecule is quite floppy, the assignments can become
ambiguous.

2. Transformation of the Hamiltonian

The non-relativistic Hamiltonian of a molecule with N nuclei and n electrons in field
free space is readily written down in terms of the Cartesian coordinates of the N
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nuclei Q = { ~Q1, . . . ~QN} and n electrons q = {~q1, . . . ~qn}, in the laboratory frame.
Here upper case letters denote nuclear and lower case letters electronic coordinates.

ĤTot(Q,q) = T̂N (Q) + T̂e(q) + V (Q,q) , (2.1)

where the potential V (Q,q) depends only on the inter-particle distances. The ki-
netic energy operators with respect to Cartesian coordinates of the laboratory fixed
system are defined as:

T̂N (Q) = −~
2

2

N∑

I=1

1
MI

∇2( ~QI) , T̂e(q) = − ~2

2me

n∑

i=1

∇2(~qi) . (2.2)

In order to separate the motion of the center of mass

~X =
1
M

[
N∑

I=1

MI
~QI +

n∑

i=1

me~qi

]
, (2.3)

with MN =
∑N

I=1 MI the mass of the nuclei and the total mass given as M = MN +
n ·me, from the internal molecular motions, it is appropriate to define molecular
centered coordinates. These types of transformations are discussed in detail in the
text book of Zülicke (1984). Of the many possible reference points as origin for the
molecular centered particle vectors we prefer here the center of nuclear mass,

~O =
1

MN

N∑

I=1

MI
~QI , (2.4)

to yield the molecular centered vectors
~RI = ~QI − ~O and ~ri = ~qi − ~O . (2.5)

This choice for the origin has the advantage to yield the simple Hamiltonian

ĤTot(R, r) = T̂cm( ~Xcm) + T̂N (R) + T̂e(r) + T̂mp(r) + V (R, r) , (2.6)

where the translational motion of the center of mass of the molecule is well sepa-
rated, and where there are no coupling terms between the momenta of the nuclei
and those of the electrons. Obviously the inter-particle potential, depending only
on the distances between the particles, is unchanged by this transformation, i.e.
V (Q,q) = V (R, r). The kinetic energy operators for the motion of the center of
mass T̂cm( ~Xcm), the motion of nuclei T̂N (R), the motion of electrons T̂e(r) and
the operator for the mass polarization involving electronic coordinates T̂mp(r) are
obtained as:

T̂cm( ~Xcm) = − ~2

2M
∇2

cm , (2.7)

T̂N (R) = −~
2

2

N∑

I=2

1
MI

∇2
I +

~2

2MN

N∑

I=2

N∑

J=2

∇I · ∇J , (2.8)

T̂e(r) = − ~2

2me

n∑

i=1

∇2
i , (2.9)

T̂mp(r) = − ~2

2MN

n∑

i=1

n∑

j=1

∇i · ∇j . (2.10)
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Actually the form of the kinetic energy operator given here for the nuclear motion,
T̂N (R) (equation 2.8), is rather symbolic, just to indicate that it depends only on
3(N − 1) independent degrees of freedom. However, it is clear from the form of
T̂N and T̂mp that nuclear masses must be used in the ab initio calculation of the
nuclear motion. In general one attempts to find coordinates for the nuclear motion,
which are more suitable for the system than the 3(N − 1) Cartesian coordinates.
For diatomic as well as for triatomic molecules this can be achieved readily. For
larger polyatomic systems this is still an art, documented in a large number of
also recent publications (see Sutcliffe 2000 and references therein). It is not even
clear yet, whether it is wise for ab initio calculations to follow the rout chosen by
spectroscopists, to separate first the rotational motion of the nuclear framework, by
transforming to a molecular fixed coordinate system. For this transformation three
principal axes of inertia need to be chosen, which can be achieved only approxi-
mately, e.g. by using the Eckart conditions. For floppy molecules, this approximation
becomes unsatisfactory.

3. The hyperspherical harmonics approach

Here for H+
3 we transform the nuclear Hamiltonian to ’democratic’ hyperspherical

coordinates, which are derived from the corresponding Jacobi-coordinates. The def-
inition of the hyperspherical coordinates as well as their interpretation has already
been discussed in detail (Johnson 1980, Johnson 1983a, b, Hinze et al. 1995). In the
hyperspherical approach, the internal Hamiltonian reads

Ĥ = − ~
2

2µ

{
1
ρ5

∂

∂ρ
ρ5 ∂

∂ρ
− Λ2

ρ2

}
+ U(ρ, θ, φ) , (3.1)

where Λ2(Ω) is the grand angular momentum operator, which depends on the
three Euler and two hyperspherical angles Ω ≡ {θ, φ, α, β, γ} and the three particle
reduced mass is given by µ =

√
M1M2M3/MN , where MN is the total mass of

the three nuclei. The potential U(ρ, θ, φ) is a function of the hyperradius ρ and the
two hyperspherical angles which determine the size and shape of the three particle
system. Using u = cos θ one obtains for the grand angular momentum operator

Λ2 = − 4
u

∂

∂u
u(1− u2)

∂

∂u
+

2
~2u2

[
J2 − J2

z +
√

1− u2 (J2
x − J2

y )
]

− 1
(1− u2)

[
4

∂2

∂φ2
− ~−2J2

z − 4i~−1Jzu
∂

∂φ

]
, (3.2)

where Jx, Jy and Jz are the components of the total angular momentum operator in
the body fixed frame. Hyperspherical harmonics (Avery 1989), the eigenfunctions
of the grand angular momentum operator

Λ2 ΨJM
Kνs(Ω) = K(K + 4)~2 ΨJM

Kνs(Ω) , (3.3)
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can be represented as

ΨJM
Kνs(Ω) = Nν e

1
2 iνφ

J∑

N=−J

F JM
Kνs,N (u) D̃J∗

MN (α, β, γ) , (3.4)

F JM
Kνs,N (u) = (1 + u)

1
4 (ν+N) (1− u)

1
4 |ν−N |

1
2 (K−ν)∑

k=s

bKν
ks,N uk , (3.5)

where D̃J
MN (α, β, γ) are normalized Wigner rotation matrix elements in the con-

vention of Zare (1988). The explicit form of the hyperspherical harmonics depends
on the particular parametrization chosen for the coordinates. Wolniewicz (1989)
has derived an algorithm for their evaluation and has given the ranges of the hy-
perspherical quantum numbers K, ν, s. Of the hyperspherical harmonics defined in
equation (3.4), linear combinations

ΘJΓ
α (Ω) =

ip√
2(1 + δν0)

[
ενΨJ

Kνs(Ω) + (−1)s+pε∗νΨJ
K−νs(Ω)

]
(3.6)

may be formed that are simultaneous eigenfunctions of the grand angular momen-
tum operator and of the operators of the three-particle permutation-inversion group
S3× I. In the above equation, εν = e−

3πi
4 ν and Γ is one of the irreducible represen-

tations of S3× I. α is a composite index, α = {K, ν, s, p}, which collects the indices
of the hyperspherical functions compatible with Γ. Since Γ is a strictly conserved
quantity, the symmetry adaption leads to a significant reduction in the size of the
Hamiltonian matrix because calculations can be performed independently for each
irreducible representation. The ro-vibrational states of H+

3 are the solutions of the
six dimensional Schrödinger equation (Wolniewicz et al. 1993, Wolniewicz & Hinze
1994, Alijah et al. 1995a)

[
Ĥ − EJΓ

n

]
ψJΓ

n (ρ,Ω) = 0 . (3.7)

The product ansatz

ψJΓ
n (ρ,Ω) =

∑
α

ΘJΓ
α (Ω)P JΓ

α,n(ρ)ρ−
5
2 (3.8)

transforms (3.7) into a set of coupled equations in the hyperradius ρ,
{[
− ~

2

2µ

∂2

∂ρ2
+

15
4 + K(K + 4)

2µρ2
~2 − EJΓ

n

]
1 + UJΓ(ρ)

}
PJΓ

n (ρ) = 0 . (3.9)

Here, PJΓ
n (ρ) =

(
P JΓ

α1,n(ρ), P JΓ
α2,n(ρ), . . . , P JΓ

αm,n(ρ)
)T is the column vector of the m

channel functions and 1 is the m×m unit matrix. The coupling is affected by the
matrix elements of the potential only:

(UJΓ)αα′(ρ) =
〈
ΘJΓ

α | U(ρ, θ, φ) | ΘJΓ
α′

〉
Ω

, U = U∗ = UT . (3.10)

As in our previous work, we have used a contracted basis Θ̃ = ΘC rather than the
primitive basis in order to reduce the number of coupled equations. We then obtain
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a set of coupled equations analogous to (3.9) with m̃ < m channel functions and
PJΓ

n (ρ) and UJΓ(ρ) replaced by

P̃JΓ
n (ρ) = CT PJΓ

n (ρ) and ŨJΓ(ρ) = CT UJΓ(ρ)C. (3.11)

This set of equations was solved as discussed previously (Wolniewicz & Hinze 1994).
The advantages of using the expansion of the eigenfunctions for the nuclear mo-
tion, ΨJM

n (ρ, Ω), in terms of the hyperspherical harmonics, ΘJΓ
α (Ω), equation (3.6),

are twofold: (1) the rotation-vibrational coupling is accounted for analytically and
exactly, (2) as the hyperspherical harmonics obey the correct boundary conditions
as the hyperangle θ approaches 90◦, the collinear structure of the triatomic, there
is no problem in the transition of the triatomic to a linear structure.

4. Exact hyperspherical vs. spectroscopic quantum numbers

The rotation-vibrational states of H+
3 can be classified rigorously by the total angu-

lar momentum, F , its space-fixed projection, Fz, which is however of no importance
in the absence of external fields, and by their symmetry index, Γ, with respect to
the three-particle permutation inversion group S3 × I. This group is isomorphic
with the point group D3h and has six irreducible representations, A1, A2 and E,
either “prime” or “double-prime” according to their parity. For H+

3 , hyperfine in-
teractions can be neglected so that the nuclear spin I and the remaining angular
momentum J are conserved separately. Hence the quantum numbers (I, J,Γ, n),
where n is a counting index, completely describe the ro-vibrational states. In our
hyperspherical method, which makes full use of the permutation-inversion symme-
try, we readily obtain such a classification. The symmetry index Γ is given in terms
of the hyperspherical quantum numbers ν and p as shown in table 1.

To be sure, not all calculated states are permitted by the Pauli principle as this
requires the total wave function to be antisymmetric with respect to a permutation
of two protons. Thus, only states with ro-vibrational symmetry A2 and E exist, the
former being combined with the totally symmetric quartet nuclear spin function
and the latter with the degenerate doublet function.

As an alternative to the rigorous quantum numbers, approximate spectroscopic
quantum numbers may be employed to characterize the ro-vibrational states. Such
quantum numbers have been discussed in detail by Watson (1984). Following his
work, a ro-vibrational state is characterized by (I, v1, v2, J,G, U, s), where v1 and v2

are the quantum numbers of the symmetric stretch and the degenerate vibration,
respectively. G is defined as G = |k− `|, with k denoting the internal projection of
the angular momentum, J , and ` the vibrational angular momentum associated with
the degenerate vibration. As Hougen (1962) has shown, k and ` are not conserved
separately. In spectroscopic representation, the permutation-inversion symmetry of
a ro-vibrational state is completely determined by the quantum numbers G, v2 and
s, see table 1. The latter quantum number, s, is needed in the case of G ≡ 0 (mod 3)
to distinguish states of symmetry A1 and A2.

For the assignment of spectroscopic quantum numbers to the calculated “hy-
perspherical” states, a semi-automatic procedure has been developed (Alijah et al.
1995b) which is based on the transformation properties shown in table 1 and on a
comparison of rotational progressions in vibrational states (v1, v

|`|
2 ) that differ only
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Table 1. Relation between spectroscopic and hyperspherical quantum numbers

(Relation of Watson’s (1984) quantum numbers (G, s) and the hyperspherical quantum
numbers (ν, p) to the three particle permutation inversion symmetry)

ν = even (G + v2) = even Γ

ν ≡ 0 (mod 3)

�
p = 0

p = 1
G ≡ 0 (mod 3)

�
s = (−1)J

s = (−1)J+1

A′1
A′2

ν ≡/ 0 (mod 3) G ≡/ 0 (mod 3) E′

ν = odd (G + v2) = odd Γ

ν ≡ 0 (mod 3)

�
p = 0

p = 1
G ≡ 0 (mod 3)

�
s = (−1)J

s = (−1)J+1

A′′1
A′′2

ν ≡/ 0 (mod 3) G ≡/ 0 (mod 3) E′′

in the symmetric stretch quantum number v1. The algorithm has been applied to
H+

3 recently (Schiffels et al. 2003b).

5. The adiabatic coordinate separation

It is necessary for the practical solution of the Schrödinger equation using HTot

(equation 2.6) to reduce the number of coordinates such that the problems for the
electronic and nuclear motion can be solved separately. To this end the adiabatic
coordinate separation

Ψα(R, r) =
∑

n

Φn(R; r)Θnα(R) (5.1)

is introduced (Born 1952, Born & Huang 1954), where the electronic state functions
Φn(R; r) are solutions of the electronic Schrödinger equation

(
T̂e(r) + V (R, r)

)
Φn(R; r) = Un(R)Φn(R; r) . (5.2)

It should be noted that an adiabatic coordinate separation is always better than
an analogous simple product ansatz, irrespective of what the relative masses are.
Here, where the nuclear masses are 2000 times larger than the electronic masses the
separation is especially good, yielding a rapidly converging series, such that even
the single leading term is a good approximation.
The expansion of the total wave function, equation (5.1), yields a set of coupled
equations to be solved for the nuclear motion:

∑

n′

{[
T̂N (R) + Un′(R)− Eα

]
δnn′ + Cnn′ + Dnn′

}
Θn′α(R) = 0 . (5.3)

In general, the operators Cnn′ and Dnn′ will be off-diagonal in the basis of the
electronic eigenfunctions:

Cnn′(R) =
〈
Φn(R; r) |

[(
T̂N (R) + T̂mp(r)

)
Φn′(R; r)

]〉
r

, (5.4)

Dnn′(R) =
~2

MN

N∑

I=2

N∑

J=2

Wnn′,I(R) · ∇J −
N∑

I=2

~2

MI
Wnn′,I(R) · ∇I . (5.5)
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The first derivative coupling matrix defined by

Wnn′,I(R) = 〈Φn(R; r) | [∇IΦn′(R; r)]〉r (5.6)

has the property Wnn′,I(R) = −W∗
n′n,I(R) because the electronic eigenfunctions

are normalizable. The diagonal elements are thus purely imaginary quantities, and
Wnn,I(R) = 0 immediately follows for real electronic wave functions. In the one
state (simple adiabatic) approximation and for real electronic wave functions, we
thus obtain:

[
T̂N (R) + Un(R) + Cnn(R)− Eα

]
Θnα(R) = 0 . (5.7)

In order to describe the nuclear motion in the one-state approximation, the fixed
nuclei potential Un(R) and the diagonal adiabatic correction Cnn(R) should be
known. The coupling of the nuclear motion to different electronic states via equa-
tions (5.4) and (5.5) is called the off-diagonal adiabatic or non-adiabatic correction.
It can be treated perturbational, especially if equation (5.3) is written in matrix
form; i.e. using a basis function expansion for Θnα(R). To illustrate this let us focus
on the electronic ground state n = 1 and on the first order off diagonal coupling
elements only. With this we obtain equation (5.3) in matrix form




A11 − 1Eα B12 B13 · · ·
B21 A22 − 1Eα 0 · · ·
B31 0 A33 − 1Eα · · ·

...
...

. . .







Θ1α

Θ2α

Θ3α

...


 =




0
0
0
...


 , (5.8)

with Aii = T + Ui + Cii and B1i = B†
i1 = C1i + D1i. Using partitioning yields

(A11 − 1Eα +
∑

i=2

B1i[Aii − 1Eα]−1Bi1)Θ1α = 0 . (5.9)

With this perturbation approximation, their is no need to compute the ro-vibra-
tional wave function components within the excited electronic states, only the ma-
trix elements with the wave functions of the excited electronic states need to be
computed.
Another more simple, though empirical approximation is based on our understand-
ing of the fixed nuclei approximation (Hinze et al. 1998). With it the electrons are
rigidly attached to the nuclei, their masses are hidden in the electronic potential U .
Thus, they are over-correlated with the nuclear motion, while in fact they should
lag behind, if the nuclei are accelerated. Consider now Newton’s equation

F = MN a (5.10)

and transform it to obtain

a =
F

MN
=
−1
MN

d UJ(R)
dR

. (5.11)

This yields

∆E ∼ nme

MN

〈
d UJ(R)

dR
(R−Re)

〉
. (5.12)
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Figure 1. Non-adiabatic corrections in H2

Here we have multiplied by the electronic masses, nme, where n is the number
of electrons, and the force by a distance, R − Re, where Re corresponds to the
minimum of the potential, to get the dimension of an energy for the expectation
value, to be taken over ro-vibrational wave functions. Note that ∆E goes to zero if
the prefactor n me/MN , goes to zero, because there should be no correction in the
limits of zero electron or infinite nuclear masses. Equally, the integral goes to zero
at the energy of dissociation, because the derivative of the potential becomes zero
for the large distances, where the vibrational wave function is large. In the above
equation, UJ(R) denotes the effective potential, which is the sum of the electronic
energy and the J dependent centrifugal term. Again, the nuclear masses MN and
the distance R−Re are symbolic here, they will depend on the coordinate system
chosen for the description of the nuclear motion.
This formula has been tested for H2, for which exact numerical data (Wolniewicz,
1995) are available. Figure 1 shows the vibrational non-adiabatic correction as ap-
proximated by the negative of

∆E = c
2 me

µ

〈
dUJ=0(R)

dR
(R−Re)

〉
(5.13)

together with Wolniewicz’s results. Here the reduced nuclear mass µ = M1M2/(M1+
M2) = 918.076336 me has been used. The numerical value of the dimensionless pa-
rameter is c = 0.113430±3.11·10−03. As can be inferred from figure 1, the empirical
formula (5.13) describes the general form of the correction appropriately and yields
results accurate to better than 0.5 cm−1, i.e. better than 10% of the maximum adi-
abatic correction. We expect that this approach, with the present numerical value
of the parameter, can be transferred to H+

3 . There it should work particularly well
as the adiabatic correction is much smaller than in H2, of the order of only one
wavenumber.
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6. Results

Using the method of hyperspherical harmonics and nuclear masses, we have calcu-
lated and analyzed the ro-vibrational states, for J ≤ 10, up to the energy region of
around 13000 cm−1 (Schiffels et al. 2003a, b). The highest states are thus located
well above the barrier to linearity at about 9000 cm−1. States above the barrier
have been observed in recent experiments by the Oka group (Gottfried et al. 2003),
and ongoing experiments in this group are probing even higher excited states, see
Gottfried (2006). Our theoretical work was performed to assist in the assignment of
observed states. In turn, comparison of our calculated with the very precise exper-
imental data provide a rigorous assessment of the accuracy achieved in theoretical
work.

We begin our analysis with the ro-vibrational states below the barrier to linear-
ity. Comparison of our calculated energies, which are based on the CRJK potential
energy surface (Cencek et al. 1998, Jaquet et al. 1998), to the comprehensive com-
pilation of experimental data by Lindsay & McCall (2001) reveals deviations of up
to 1.2 cm−1. Since the ab initio electronic energies on which the potential energy
surface is based are accurate to about 0.02 cm−1, as the diagonal adiabatic cor-
rection and relativistic effects are included, the discrepancies between theory and
experiment must be due to the neglected off-diagonal adiabatic contributions, i.e.
due to coupling effects to higher electronic states.

The analysis of the differences between the observed and calculated ro-vibrational
energies shows strong vibrational but relatively small rotational shifts. Such a be-
havior has been observed before, in our work on the isotopologs D+

3 (Alijah et al.
1995b), H2D+ (Alijah et al. 1995a) and D2H+ (Alijah & Beuger 1996), where it
led to empirical corrections of the band origins. In our 2003 work (Schiffels et al.
2003a, b), we considered both vibrational and rotational non-adiabatic corrections.
Following this work, the correction is expressed analytically as

∆E(J,G) = a0[v] + a1[v]J(J + 1) + a2[v]G
2 . (6.1)

The coefficients, which depend explicitly on the vibrational quantum numbers [v],
were determined by least squares fitting of the differences between calculated and
observed data. When this correction is subtracted from the calculated energy values,
an estimate is obtained for the ro-vibrational energy including non-adiabatic effects:

E
(1)
Corr = ECalc − a0[v] − a1[v]J(J + 1)− a2[v]G

2 . (6.2)

A close agreement of within 0.1 cm−1 of the corrected energies with experimental
data was found. This accuracy is consistent with the accuracy of the analytic for-
mula for the representation of the ab initio electronic energies. A disadvantage of
expression (6.2) is that it cannot be applied directly. Due to the dependence of the
coefficients on the vibrational quantum numbers, a prior assignment of the ab ini-
tio term values to spectroscopic term values would be required. It may however be
improved by the following measures: Firstly, since the coefficients of the rotational
correction were found to be almost the same for all bands, they may be replaced by
band-independent average values ā1 and ā2. Secondly, the correction of the band
origins may be expressed as a linear function of the energy, a0[v] = b1E

0
Calc. With

this, we obtain a more general correction formula, allowing extrapolation to higher
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energies:
E

(2)
Corr = ECalc − b1E

0
Calc − a1J(J + 1)− a2G

2 . (6.3)

The accuracy obtained by applying the above correction formula is expected to be
0.2 cm−1. Though E

(2)
Corr is more general than E

(1)
Corr and with little loss of accuracy,

it can be used only if the vibrational (to identify the band origin) and rotational
quantum numbers are known. Frequently, this is not the case and moreover the
spectroscopic quantum numbers become less meaningful at high energies anyway.
As an alternative to formula (6.3) we suggested the following correction formula,

E
(4)
Corr = ECalc − b1ECalc , (6.4)

in which the b1 scaling is applied directly to a calculated ro-vibrational state rather
than just to the band origins. With this we expect to overcorrect in particular
rotationally highly excited states. At not too high values of the rotational quantum
numbers, the predictions made by this rather simple formula should still be fairly
accurate.

Since the applicability of our recommended correction formula (6.3) relies on
the correct identification of calculated states in terms of spectroscopic quantum
numbers, we attempted to assign as many such states as possible. To this end, the
semi-automatic assignment algorithm was employed first in a test to recover the
known assignments (Lindsay & McCall 2001) of the ro-vibrational states below the
barrier. As the proposed assignments proved reliable, we extended our analysis to
higher energy states, up to 5ν2. Some heavily perturbed states, however, could not
be assigned as in these cases the spectroscopic quantum numbers do no longer hold.
The energy values of such states were adjusted with help of the more approximate
correction formula (6.4).

Our calculated energy levels, corrected empirically mostly by formula (6.3),
(Schiffels et al. 2003b) and their proposed assignments have proved helpful in the
interpretation of recent experimental data (Gottfried 2006) as they led to the most
accurate calculated transition frequencies. In her analysis it became obvious, how-
ever, that the energy shifts produced by the correction formula for the states in the
13000 cm−1 region are too big. The average error in our data, based on 34 experi-
mentally observed states, was found to be −0.35 cm−1 compared to 0.80 cm−1 for
the uncorrected case. Following the discussion of the adiabatic correction in the pre-
ceding section, this over-estimation of the non-adiabatic effects can be understood
readily. Our extrapolation procedure assumes a linear dependence of the vibrational
correction on the energy, but we know that this is not strictly true as at the dis-
sociation limit such a correction must approach zero, see figure 1. At 13000 cm−1,
i.e. after linear extrapolation over not less than 4000 cm−1, non-linear behavior of
the non-adiabatic effects as a function of the total energy becomes noticeable.

7. Outlook

Thus, our correction formulae (6.3) and (6.4) should be adapted to account for this.
The new, very precise experimental data will form the basis for such an adaptation.
With this, we expect to make accurate predictions of the ro-vibrational levels at
even higher energies.
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