

Charles University Prague Faculty of Mathematics and Physics

Action spectroscopy of H₃⁺ using overtone excitation Laser induced ion – molecule reactions

(IMR & Recombination of H₃⁺)

Juraj Glosík

Charles University In Prague

Radek Plašil Gregor Bánó Peter Macko Jozef Varju <u>Petr Hlavenka</u> Ihor Korolov Oldřich Novotný Tomáš Kotrík

MPIK Heidelberg (Freiburg)

Andreas Wolf Joachen Mikosch Daniel Zajfman Hologer Kregel Roland Wester etc.

<u>TU Chemnitz</u> Dieter Gerlich Alfonz Luca

Falk Windisch

 H_3^+

Temperature and pressure dependence (2004)

New experiments

of $\alpha(H_3^+)$

AISA- 200Pa

VT-FALP - 2005 p=1600 Pa: T=250 K

10¹⁵

AISA - 2004 p=160-320 Pa; T=230 K

10¹⁴

Cryring, TSR + Theory McCallet al. (250 K)

Second overtone excitation-

plasma diagnostics, ions characterization in RF trap relaxation studies (by collisions) ortho to para transitions

overtone band $v_2=3 \leftarrow 0$ at 1.4 µm

IR absorption study cw CRDS

Mirrors – <u>R = 99.994%,</u>

Ortho

Para

Para

Ortho

Para

 $0v_{2}^{0}(1,1)$

Para

 $3v_{2}^{1}(2,0)$

R(1,0)

86.960

0v₂⁰(1,0)

Ortho

7241.245

Recombination of $H_3^+(v=0)$ in He/Ar/H₂ SA

He/Ar/H

Ions in low temperature 22-pole RF trap

axial barriers

adial barri

Laser enhanced IMR – Laser Induced Reactions LIR

 $H_3^+(0) + Ar \Rightarrow no \quad reaction$

Radiative deexcitation of just excited ions... Internal excitation of injected ions Presence of H_2 from source Ar high condensation temperature HD, D_2 or H_2 can react dependent on ortho/para ...

Synchronous detection and Σ over many loops

H_3^+ Spectrum at 50 K

State population Transition frequencies T_{KIN} , T_{rot} ,

Transition	$\nu_{\rm calc}({\rm cm}^{-1})^{\rm a}$	$\nu_{\rm exp}({\rm cm}^{-1})^{\rm b}$	$\nu_{\rm exp} ({\rm cm}^{-1})^{\rm c}$
R(1,0)	7241.025	7241.244(70)	7241.235(17)
$R(1,1)^{u}$	7237.058	7237.285(70)	7237.277(17)
$R(2,2)^{l}$	7193.311	7192.908(70)	7192.875(17)

Source of cold H₃⁺ for TSR

H⁺₃

B. F. Ventrudo, 1994

The next step 14 K LIR

Separated ion source

Pulsed Beam of Ar

 $H_3^+ + h\nu \Longrightarrow H_3^{+*} + Ar \Longrightarrow ArH^+, Ar^+$

Test of Pulsed Beam of Ar

$$H_2^+ + Ar \rightarrow ArH^+, Ar^+ + \dots$$

$$H_2^+ + H_2 \longrightarrow H_3^+ + H$$

during the pulse $\tau_{Ar} \sim 10 \,\mu s$

LIR HD_2^+ at 10K with Pulsed Beam of Ar

 HD_2^{+*} $HD_2^+ + (hv)$ $HD_2^{+*} + Ar \Longrightarrow ArH^+, ArD^+$

9 K ground state ortho HD_2^+

NIR LIR with Ar as the monitor

Charles University Prague Faculty of Mathematics and Physics

It is pleasure to be here

Quo vadis H_3^+

Juraj.Glosik@mff.cuni.cz

Charles University Prague

13.2.2006 21:37:02