

Dynamical constraints and nuclear spin caused restrictions in $H^+ + H_2$, $H_3^+ + H_2$ and deuterated variants

Dieter Gerlich

Introduction

Collisions: direct, statistical, thermodynamics Experimental techniques: beams and traps

Reactions: H^+ and $H_2^+ + H_2$

Nuclear spin restriction: ortho - para conversion Dynamically biased statistical model Energetics

H_3^+ + H_2 : results, open questions

H-D scrambling, isotope fractionation Dynamical restrictions

State specific reactions

Laser induced processes (opto-chemical pumping)

Outlook

Reactions with hydrogen atoms, sub-K cooling of ions

H₄⁺ surface

H⁺ + H₂: Radiative association

D. Gerlich and S. Horning "Experimental Investigations of Radiative Association Processes as Related to Interstellar Chemistry" Chem. Rev. 92, 1509 (1992)

H₃⁺ complex life time

D. Gerlich and S. Horning "Experimental Investigations of Radiative Association Processes as Related to Interstellar Chemistry" Chem. Rev. 92, 1509 (1992)

Simple scrambling model

Deuteration: thermal equilibrium?

 $H_3^+ + HD \leftrightarrow H_2D^+ + H_2$

~ exp(232 K / T)

Ramanlal & Tennyson	2.6(+12)
Adams & Smith (1981)	1.5(+9)
<u>Sidhu et al. (1992)</u>	7.1(+12)
<u>Gerlich et al. (2002)</u>	$H_2D^+ / H_3^+ = 12 \%$

Ramanlal & Tennyson wrote in 2004:

trap experiment disagrees with calculations by

12 orders of magnitude

Ramanlal and J. Tennyson Monthly Notices of the Royal Astronomical Society, **354** (2004) 161 D. Gerlich, E. Herbst, and E. Roueff, Planetary and Space Science, **50** (2002) 1275

Effective potential V* $V^* = q^2 E_0^2 / 4m\Omega^2$

Adiabaticity parameter η $\eta = 2 q |\nabla E_0| / m\Omega^2$

parameters: q, m, E₀, Ω scaling: $m\Omega^2$

 $\eta \sim E_{max}^{(n-2)/(2n-2)} = E_{max}^{9/20}$

d = 1 mm2 $r_0 = 10 \text{ mm}$

 $r_0 = (n-1) d/2$ 2n = 22

Buffer gas cooling in an rf trap

Dynamical constraints and nuclear spin caused restrictions in $H^+ + H_2$, $H_3^+ + H_2$ and deuterated variants Dieter Gerlich

Introduction

Collisions: direct, statistical, thermodynamics Experimental techniques: beams and traps

Reactions: H^+ and $H_2^+ + H_2$

Nuclear spin restriction: ortho - para conversion Dynamically biased statistical model Energetics

H₃⁺ + H₂: results, open questions

H-D scrambling, isotope fractionation Dynamical restrictions

State specific reactions

Laser induced processes (opto-chemical pumping)

Outlook

Reactions with hydrogen atoms, sub-K cooling of ions

Ortho para transitions in reactive $H^+ + H_2(j)$ collisions

$H^{+} + H_{2} \text{ statistical theory}$ $\sigma_{jv \to fv'}^{E} = \frac{\pi}{k^{2}(2j+1)} \sum_{II=0}^{1} \sum_{J=0}^{J_{m}} \frac{2J+1}{N^{JEII}} \sum_{l=|J-j|}^{J+j} P_{ljv}^{JEII} \times \sum_{l'=|J-f|}^{J+j'} P_{l'fv'}^{JEII} g_{jj'}$

 $n(ortho)/n(para) = 9.35 \cdot \exp(-169.4 K/T)$

$$P_0(v',j') = \frac{1}{\Sigma P_0} (2j'+1)g_{jj'} \cdot E_T^{\prime 1/2}$$

D. Gerlich "Ortho para transitions in slow $H^+ + H_2$ collisions" J. Chem. Phys. **92** (1990) 2377

H⁺ + D₂(j) statistical theory

D. Gerlich "Calculations of reactive cross sections and rate coefficients for isotopic variants of the H+ + H2 - system in the energy range 2 meV - 1.8 eV", in SASP edited by W. Lindinger et al., 304 (1982)

Rotational-State Resolved Scattering of Rydberg H^{*}-Atoms with D₂

Translational Energy (kcal/mol)

Xueming Yang, Dalian Institute of Chemical Physics

H₃⁺: internal exitation

high rotational states ortho-para ratio

Internal excitation of H₃⁺

W. Beyer Dipl. Thesis Freiburg 1976

$H_2^+ + H_2 \rightarrow H_3^+ + H$: merged beam results

T. Glenewinkel-Meyer, D. Gerlich, "Single and Merged Beam Studies of the Reaction H2+ + H2 \rightarrow H3+ + H", Israel Journal of Chemistry, 37 (1997) 343

Decay probabilities $o/p-H_2^+ + o/p-H_2 \rightarrow o/p-H_3^+ + H$

	0	р
00	2/3	1/3
ор	1/3	2/3
ро	1/3	2/3
рр	<mark>0</mark>	1

Oka group (Table III b from Cordonnier et al. 2000)

Gerlich (2004)		
	0	р
00	13/18	15/18
ор	1/2	1/2
ро	1/2	1/2
рр	0	1

Cordonnier, Uy, Dickson, Kerr, Zhang, Oka, J. Chem. Phys. **113 (**2000), 3181. Gerlich, in: Book of abstracts XIV SASP, ed. P. Casavechia, La Thuile, Italy, (2004) 1

$H_2(j)^+ + H_2 \rightarrow H_3^+ + H$

T. Glenewinkel-Meyer, D. Gerlich, "Single and Merged Beam Studies of the Reaction H2+ + H2 \rightarrow H3+ + H", Israel Journal of Chemistry, 37 (1997) 343

Dynamical constraints and nuclear spin caused restrictions in $H^+ + H_2$, $H_3^+ + H_2$ and deuterated variants Dieter Gerlich

Introduction

Collisions: direct, statistical, thermodynamics Experimental techniques: beams and traps

Reactions: H^+ and $H_2^+ + H_2$

Nuclear spin restriction: ortho - para conversion Dynamically biased statistical model Energetics

H_3^+ + H_2 : results, open questions

H-D scrambling, isotope fractionation Dynamical restrictions

State specific reactions

Laser induced processes (opto-chemical pumping)

Outlook

Reactions with hydrogen atoms, sub-K cooling of ions

H₃⁺ + D₂ merged beams

D. Gerlich "Inhomogeneous Electrical Radio Frequency Fields: A Versatile Tool for the Study of Processes with Slow Ions" Adv. in Chem. Phys. LXXXII (1992)

D - H scrambling

$$\begin{array}{lll} \mathsf{D_3}^+ + \mathsf{H_2} & \rightarrow \mathsf{D_3}^+ + \mathsf{H_2} \\ & \rightarrow \mathsf{H_2}\mathsf{D}^+ + \mathsf{D_2} & - 29 \text{ meV} \\ & \rightarrow \mathsf{HD_2}^+ + \mathsf{HD} - 20 \text{ meV} \end{array}$$

D. Gerlich "Experimental Investigation of Ion-Molecule Reactions Relevant to Interstellar Chemistry" J. Chem. Soc. Faraday Trans., 89 (13), 2199-2208, (1993)

D_3^+ + p - H₂ in a T-variable trap

m/ <i>u</i>	300 K	15 K
6→5	90	4
6→4	70	0.8
5→4	50	0.5
5→3	70	0.7
4→3	90	09

Sequential deuteration of H₃⁺

 $[HD]=1.8 \times 10^{12} \text{ cm}^{-3} \text{ T} = 10 \text{ K}$

D. Gerlich, E. Herbst, and E. Roueff, Planetary and Space Science, **50** (2002) 1275

H_2D^+ / H_3^+ equilibrium in 22PT

D. Gerlich, E. Herbst, and E. Roueff, Planetary and Space Science, 50 (2002) 1275

Deuteration $H_3^+ + HD \leftrightarrow H_2D^+ + H_2$: equilibrium constant *K*?

K~ exp(231.8 K / T)

<i>T</i> (K)	Adams and Smith	Herbst	Ramanlal
80	4.5 (±1.3)	5.9	6.82
200	2.4 (±0.7)	2.6	1.52
295 2.0 (±0.6) 2.1 ^a 1.07 ^a			
^a The theoretical value is actually at 300 K			

Ramanlal & Tennyson	2.6(+12)
Adams & Smith (1981)	1.5(+9)
<u>Sidhu et al. (1992)</u>	7.1(+12)
<u>Gerlich et al. (2002)</u>	n-H ₂ 6 p-H ₂ 500
T _{22PT} 10 K, T _{p-H2 Gen} 12.5K	600

Ramanlal & Tennyson wrote in 2004: trap experiment disagrees with calculations by 12 orders of magnitude

Ramanlal and J. Tennyson Monthly Notices of the Royal Astronomical Society , **354** (2004) 161 D. Gerlich, E. Herbst, and E. Roueff, Planetary and Space Science, **50** (2002) 1275

H_2D^+ / H_3^+ equilibrium in 22PT

Plasil, Glosik, Gerlich, 2004

Ortho-para conversion in H_3^+ + H_2 collisions

Cordonnier et al. (2000) Table III b

	00	ор	ро	рр
00	37/60	1/12	7/30	1/15
ор	1/4	1/4	1/2	<mark>0</mark>
ро	7/30	1/6	7/15	2/15
рр	1/5	<mark>0</mark>	2/5	2/5

Gerlich (2004) (high energy limit)

X	00	ор	ро	рр
00	5/7	1/21	1/7	2/21
ор	3/7	1/7	3/7	<mark>0</mark>
ро	3/7	2/21	3/7	1/21
рр	3/7	<mark>0</mark>	1/7	3/7

$$o/p-H_3^+ + o/p-H_2 \rightarrow o/p-H_3^+ + o/p-H_2$$

dynamical constraints

- (i) total nuclear spin *I* is conserved
- (ii) $P_{C} \sim (2I + 1)$
- (iii) at high energies:

 $P_{decay} \sim \text{statistical weight of the products:} [o-H_2] / [p-H_2] = 3 / 1$ $[o-H_3^+] / [p-H_3^+] = 1 / 1$

(iii) ´ at low energies:

P_{decay} from phase space theory (counting accessible states)

Cordonnier, Uy, Dickson, Kerr, Zhang, Oka, J. Chem. Phys. **113 (**2000), 3181. D. Gerlich, Symposium in Atomic, Cluster and Surface Physics, La Thuile, Italy, 1 (2004)

PES H₅⁺: proton transfer

Dynamical constraints and nuclear spin caused restrictions in $H^+ + H_2$, $H_3^+ + H_2$ and deuterated variants Dieter Gerlich

Introduction

Collisions: direct, statistical, thermodynamics Experimental techniques: beams and traps

Reactions: H^+ and $H_2^+ + H_2$

Nuclear spin restriction: ortho - para conversion Dynamically biased statistical model Energetics

H₃⁺ + H₂: results, open questions

H-D scrambling, isotope fractionation Dynamical restrictions

State specific reactions

Laser induced processes (opto-chemical pumping)

Outlook

Reactions with hydrogen atoms, sub-K cooling of ions

Overtone probing of H₃⁺ states

$$H_{3}^{+}(v=0) + hv \Rightarrow H_{3}^{+}(v_{2}=3)$$
$$H_{3}^{+}(v>1) + Ar \Rightarrow ArH^{+} + H_{2}$$

GIF Project e- + H3+ TSR and 22PT (MPIK HD J. Mikosch, H. Kreckel, R. Plasil, D. Gerlich, J. Glosik, D. Schwalm, A. Wolf, J. Chem. Phys., 121, 11030 - 11037 (2004)

n- H_2 : o: p = 0.75: 1 "p"- H_2 : o: p = 0.20: 1

Schlemmer, Asvany, Hugo, Gerlich, Astrochemistry, IAU Symposium 231, 2005

Overtone detection of D_2H^+ (0₀₀)

Doppler	width
discharge	250 K
trap	9 K

Transition

calc.	6536.301
measured	6536.319

Hlavenka, Plasil, Bano, Korolov, Gerlich, Ramanlal, Tennyson, Glosik (2005) submitted

Laser induced reactions in a trap

$H_3^+ LIR$

- finite sample of ions (~1000)
- Population: P(J,G), P(2)... P(J), ...
- Pumping J to excited state
- reaction

$H_3^* + Ar \rightarrow ArH + H$

 $J' \rightarrow J$

rate coefficients

laser excitation

relaxation: radiative, collisions,...

reaction

IR excitation

- $P(J) \rightarrow 0$ ("hole burning")
- relaxation

S. Schlemmer, T. Kuhn, E. Lescop, and D. Gerlich, "Laser excited N_2^+ in a 22-Pole trap" Int. J. Mass Spectrom. Ion Proc. **185** (1999) 589

Dynamical constraints and nuclear spin caused restrictions in $H^+ + H_2$, $H_3^+ + H_2$ and deuterated variants Dieter Gerlich

Introduction

Collisions: direct, statistical, thermodynamics Experimental techniques: beams and traps

Reactions: H^+ and $H_2^+ + H_2$

Nuclear spin restriction: ortho - para conversion Dynamically biased statistical model Energetics

H₃⁺ + H₂: results, open questions

H-D scrambling, isotope fractionation Dynamical restrictions

State specific reactions

Laser induced processes (opto-chemical pumping)

Outlook

Reactions with hydrogen atoms, sub-K cooling of ions

Atomic Beam 22-Pole Ion Trap (AB-22PT)

 H_3^+ + D: deuteration

Combination: pulsed effusive beam with 22PT

Effusive source T=4 K for He

Velocity distribution largest probability for [0,dv]

Time distribution of the density Chopped beam

TECHNISCHE UNIVERSITÄT	FAKULTÄT FÜR NATURWISSENSCHAFTEN	
	Gasentladungs- und Ionenphysik DFG FG Laboratory Astrophysics	
4K-22PT	J. Glosik, R. Plasil, F. Windisch	
$H_3^+(J,K) + e^-$	D. Zajfmann, A. Wolf, H. Krekel, TSR Heidelberg	
AB-22PT + H-beam	A. Luca, G. Borodi, C. Mogo	
22PT-spectroscopy	J. Maier, Basel	
Beam-Trap astrochemistry	M. Smith THE UNIVERSITY OF ARIZONA	
TV-22PT	S. Schlemmer, O. Asvany (Köln, Leiden)	