

# **Dissociation Dynamics of the Low-lying Rydberg States of H<sub>3</sub> and its Isotopomers**

Chris Laperle, Jennifer Mann, John Savee, Mort Fineman and Robert E. Continetti University of California, San Diego Department of Chemistry and Biochemistry

**\$\$ US Air Force Office of Scientific Research** 

Royal Society Discussion on H<sub>3</sub>+ Satellite Meeting London, January 18, 2006

# **Motivation**

## H<sub>3</sub> - simplest neutral triatomic molecule

- 3 protons, 3 electrons
  - •Amenable to high level theoretical treatments
  - •Predissociating Rydberg states with D<sub>3h</sub> symmetry
  - •Exhibits Jahn-Teller effect
  - •Important for understanding interstellar and hydrogen plasma chemistry

# **Dissociative Charge Exchange**

 $AB^+ + M$   $AB^* + M^+$   $A + B + M^+ + KER$ 

- Prototypical elementary charge-transfer reactions
- Source of energetic neutral atoms in planetary atmospheres
- Produce excited neutral states below the ionization potential of AB
- Insights into intermediate steps in DR to ground state neutral products

## Charge Exchange Energetics and Dynamics

 $AB^+ + M \longrightarrow A + B + M^+ + KER$ 



### Multiparticle Translational Spectrometer Charge Exchange / Dissociative Recombination



Pulsed Discharge Supersonic Expansion lon Source ( $O_2$ , n- $H_2$ ,  $D_2$ , n,i- $C_3H_7Br$ )

Collision Cell: 10<sup>-4</sup> torr Cs 1 mm path length

Measure product momenta with multiparticle time- and position-sensitive detector







*I*,*II*:  $O_2^+(X^2_g) + Cs = O_2^{(1,3)} O^{(3P)} + O^{(1D)}$ 

We produce vibrationally and rotationally cold cations  $DCE - probe of O_2^+$  vibrational distribution





 $H_3^+ + Cs \longrightarrow H_3^* \longrightarrow H_2^+ + H(^2S)$ 

H<sub>2</sub> rovibrational excitation prevents resolution of specific intermediate H<sub>3</sub> Rydberg states

Kinetic Energy Release for 3-Body DCE: H<sub>3</sub>\* 3 H



**Physical Review Letters (2004)** 

## Vibronic Structure of Rydberg States of H<sub>3</sub>

### PES for degenerate 3p <sup>2</sup>E' state as f(Q<sub>x</sub>, Q<sub>y</sub>)



\* Figure from V. Kokoouline, C. H. Greene, *Phys. Rev. A* 68, 012703 (2003)

#### Normal modes of $H_3^+/H_3$



## Dalitz Plot – Partitioning of Product Momenta



#### **Product Momenta, Molecular Configurations and Dalitz Plots**



Momentum partitioning correlates with molecular configurations for distortions near D<sub>3h</sub> configuration

$$f(p_n) = \frac{p_n^2}{\sum p_i^2}$$

A measure of the molecular configuration at crossing to 3-body continuum, assuming minimal exitchannel interactions



R.H. Dalitz (1953)

# The 2s ${}^{2}A_{1}$ ' state – $H_{3}$ and $D_{3}$



Dissociation via a  $C_{2v}$  distortion towards a linear geometry Coupling to the 2p <sup>2</sup>E' dissociative state via bend zero pt.

## Isotope Effects: Partitioning of Product Momenta

Consider tunneling along a hypothetical reaction coordinate:



Reaction Coordinate, Q

# The 2p ${}^2A_2$ " state – $H_3$ and $D_3$



Dominated by symmetric dissociation accompanied by C<sub>2v</sub> distortions Coriolis coupling to 2p <sup>2</sup>E' dissociative state

## The degenerate $3p^{2}E'$ state – $H_{3}$ and $D_{3}$



Both show significant symmetric dissociation <sup>3</sup> H<sub>3</sub> – pathway to a C<sub>s</sub> symmetry Jahn-Teller distorted configuration D<sub>3</sub> – broad distribution of momentum partitioning Differences: Time-scale for nuclear motion, zero-point, rotational symmetries, nuclear spin statistics, .... Geometric phase?

#### Dissociation of the degenerate 3p 2E' Rydberg State



### Comparison to Results from Helm's Group (Freiburg)

**DAF Corrected Data** 

FREIBURG

 $H_3 3pE'$ 

 $D_{3} 2sA_{1}'$ 

 $D_{3} 2 p A_{2}$ "

Radiative Preparation



SAN DIEGO

Charge Exchange

### Mixed Isotopomers: H<sub>2</sub>D and D<sub>2</sub>H

12 keV/Cs



Heavier, slower D<sub>2</sub>H exhibits reduced non-resonant charge transfer (as expected!)

### Kinematic Effects in Mixed Isotopomers



# Dalitz Map: H<sub>2</sub>D vs. D<sub>2</sub>H



# Isotope Effects – $H_2D$ vs. $D_2H$



## Isotope Effects – 2-Body Dissociation of D<sub>2</sub>H



Significant 2-Body Dissociation Isotope Effect in D<sub>2</sub>H

H<sub>2</sub>D<sup>+</sup> Beam Contaminated by D<sub>2</sub><sup>+</sup>

(no problem for three-body breakup or dissociation to HD + H)

**Branching Ratios To Be Determined** 

## H<sub>2</sub>D / D<sub>2</sub>H Preliminary Conclusions and Questions

 $H_2D$ : D atom elimination in 3-body dissociation favors acute isosceles configuration (D atom 'elimination'  $C_{2v}$  distortion) some evidence for D-H-H configuration

 $D_2H$ : Prefers D-H-D in  $C_{2v}$  distortion towards linear Large isotope effect in 2-body HD/D<sub>2</sub> channel

Vibrational motion, nuclear spin statistics affected by isotopic substitution – probe different nuclear configurations

Potential Practical impact: source for higher energy D atoms in interstellar space effect on isotope enrichment processes

#### **Dissociative Charge Exchange of H<sub>3</sub> / Isotopomers**

- •Resolved KER spectra for three lowest Rydberg states
- •Momentum partitioning measure of 3-body dissociation configuration
- The H<sub>3</sub> 3p <sup>2</sup>E' state system undergoing Jahn-Teller distortion
  Evidence for inner-cone state?
- Momentum distributions profound challenge for theoretical predictions of non-adiabatic couplings and 3-body dissociation dynamics
- •Significant isotope effects in D<sub>3</sub>, D<sub>2</sub>H and H<sub>2</sub>D
- •Future: DR? Experiments with p-H<sub>2</sub>?